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By representing double Laplace-type integrals as iterated Mellin–Barnes integrals,
followed by judicious application of residue theory, the authors obtain new asymp-
totic expansions of integrals of the form

∫∞
0

∫∞
0 e−λf(x,y)g(x, y) dxdy for a large class

of ‘phases’, f , and ‘amplitudes’, g. The allowed phases are ‘polynomials’ (non-integer
powers are permitted) with an isolated, though possibly degenerate, critical point at
the origin. The determination of which residues to use in constructing the expansions
is characterized in elementary geometric terms. Numerical examples highlighting the
use of the expansions are supplied, as is a discussion of the relationship between the
geometry of the Newton diagram of the phase and the asymptotic scales used in the
expansions.

Keywords: asymptotic expansions; iterated Mellin–Barnes integrals;
Newton diagram; single critical point
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584 D. Kaminski and R. B. Paris

1. Introduction

In this paper, and its sequel, we are concerned with the task of developing asymp-
totic expansions of n-dimensional Laplace-type integrals

I(λ) =
∫ ∞

0
· · ·
∫ ∞

0
e−λf(x1,x2,...,xn)g(x1, x2, . . . , xn) dx1dx2 · · ·dxn, (1.1)

as the parameter λ → ∞. Initially, we shall assume g ≡ 1 and f is a ‘polynomial’
(we allow non-integer powers) with positive coefficients, although later in the paper,
we show how some restrictions may be relaxed. To ensure the existence of (1.1), we
will assume f contains the terms xµ1

1 + xµ2
2 + · · ·+ xµnn .

Integrals of the type (1.1), and the equivalent oscillatory form, have been studied
by a variety of authors, and much is known about the problem of determining the
large-λ behaviour of this integral under a range of hypotheses for the case of n = 1.
For multidimensional Laplace integrals, the problem is considerably more difficult,
with most work to date being of a qualitative character under very broad assump-
tions. For very general f and g (real analytic f , smooth g), work by Malgrange (1974)
produced a structure theorem for the form the asymptotic expansion of I(λ) takes.
The proof relied on the use of a resolution of the singularity of the phase function,
f , at the origin, and was not amenable to computation.

Subsequent work by Arnold et al. (1988) provides some sharper results, includ-
ing estimates of the order of the leading term expressed in terms of the remoteness
of the Newton diagram of the phase, f , (see the following section for a definition
of this term), but again, because their work relies on algebraic/topological meth-
ods (principally, the resolution of singularities), little is said about the problem of
constructing full expansions of I(λ). Related work by Vasil’ev (1977) obtains the
leading term of the expansion and the correct order in terms of the remoteness of
the Newton diagram, but does so in a fashion unsuitable for obtaining higher order
approximations.

Other efforts have been made to deduce the asymptotic behaviour of I(λ) using
information contained in the Newton diagram of f . One novel approach, by Denef
& Sargos (1989), works with dual structures of the faces of the Newton diagram
and sidesteps the use of a resolution of singularities by resorting instead to a ‘dis-
section’ of the integration domain, with different changes of variables (determined
by faces of the Newton diagram) brought to bear over different pieces of the inte-
gration domain. Denef & Sargos obtain more detailed information about the poles
of the distribution f s

+ ≡ max(f s, 0) whose action on test functions is given by
ϕ 7→ ∫

Rn
f s

+(x1, . . . , xn)ϕ(x1, . . . , xn) dx1 · · ·dxn. The style of argument employed
suggests that each face in the Newton diagram ought to appear in some sense in the
asymptotics of f s

+. Their result can be rendered in the form of an exponential or
oscillatory integral by passing to a Mellin transform, after the fashion employed by
Wong & McClure (1981, p. 518).

A more elementary approach was employed by Dostal & Gaveau (1987, 1989)
where an argument employing a rescaling of the polynomial phase f , which we
examine in this paper, for each face in the Newton polygon led to an asymptotic
approximation, but with coefficients that were expressed as integrals of exponential
functions resulting from their rescaling operations.

If one is willing to cast aside the desire to use the geometric content of the Newton
diagram of f , then the results are still quite limited. In short, one can represent the
multiple integral I(λ) as the Fourier or Laplace transform of a lower dimensional
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Asymptotics of Laplace integrals 585

integral as is done in Jones & Kline (1958) or Wong & McClure (1981), deduce the
asymptotics of the function defined by the lower dimensional integral and subsequent-
ly apply Watson’s lemma or a similar argument. This approach, however, becomes
very unwieldy when the phase function has something other than a non-degenerate
Hessian matrix at the origin.

Our approach to the problem completely avoids the use of a resolution of singu-
larity, and makes no attempt to represent the integral as an integral transform of
a function defined by an integral over a lower dimensional object. As such, we can
avoid the analytical difficulties encountered in the approaches mentioned above, and
provide a great deal of information relating the geometry of the Newton diagram of
the phase, f , to the asymptotics of (1.1). Indeed, the geometry of the Newton dia-
gram surfaces in the course of developing the expansions of (1.1), and we shall find
that I(λ) has a compound expansion comprising one series per face of the Newton
diagram.

We are, however, limited to those phases, f , that have a single critical point at
the origin, and nowhere else in the domain of integration of (1.1). The degeneracy of
the critical point at the origin plays no role whatsoever in our analysis.

After a brief summary of terminology and some preliminary estimates used in the
remainder of the paper, we turn to a Mellin–Barnes integral representation of (1.1).

2. Definitions and some useful estimates

For a real analytic function f , with Maclaurin series

f(x, y) =
∑
m,n>0

amnx
myn,

define the carrier of f to be the set of ordered pairs of non-negative integers {(m,n) :
amn 6= 0}; for a polynomial f , this is just the set of powers of monomials comprising f .

For each point P in the carrier of f , consider the positive quadrant R2
+ = {(x, y) :

x > 0, y > 0} translated by P so that the origin is sited at P . Call this translate
of the positive quadrant P + R2

+. Form the union of these translated quadrants
and then its convex hull. The boundary of the convex hull will be composed of
two rays parallel to the coordinate axes, as well as a polygonal path composed of
finitely many line segments. This polygonal path is termed the Newton diagram or
Newton polygon of f . Figure 1 displays the two-dimensional Newton diagram for the
polynomial 2x5 + x3y2 + xy2 + 3y5.

This definition of the Newton diagram, from Brieskorn & Knörrer (1986), can easily
be extended to functions f with arbitrary non-negative real powers for the monomials
comprising f , an extension which we adopt throughout this paper. Extension to
functions of three or more variables is also straightforward: one replaces the use
of the positive quadrant in the construction by the use of the positive orthant of
appropriate dimension.

Given a Newton diagram for a function f(x, y), we form the ray issuing from the
origin with direction vector e = (1, 1). Because the Newton diagram meets both
coordinate axes, there is a number, d say, for which de is a point of the Newton
diagram. The number d is the distance to the Newton diagram, and the quantity
−1/d is termed the remoteness of the Newton diagram. The points (m,n) used to
construct the Newton diagram we term internal points if they do not lie on coordinate
axes. If these points lie on the Newton diagram, they are termed vertices.
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Figure 1. Newton diagram for 2x5 + x3y2 + xy2 + 3y5 showing the line m = n and the distance
d to the Newton diagram.

We will be estimating the magnitude of the integrands of Mellin–Barnes integrals,
so the following consequences of Stirling’s formula, presented in Paris & Wood (1986,
§2.1.3), will prove to be useful. Let s = ρeiθ where ρ and θ are real. Then, for β > 0
and α complex, we have

log |Γ (α+ βs)| ∼ βρ cos θ log βρ− βρ(θ sin θ + cos θ)
+(Re(α)− 1

2) log βρ

log |Γ (α− βs)| ∼ −βρ cos θ log βρ+ βρ(θ sin θ + cos θ)
+(Re(α)− 1

2) log βρ− log | sinπ(α− βs)|,

 (2.1)

as ρ→∞, provided | arg(α± βs)| < π.
A number of expressions appear frequently throughout our analysis for which a

more compact notation will prove convenient:

K = 1 + µk, L = 1 + µl, R = 1 + µr,

K ′ = 1 + νk, L′ = 1 + νl, R′ = 1 + νr.

}
(2.2)

These definitions are brought to the attention of the reader when first used.

3. Representation as a Mellin–Barnes integral

For double integrals (higher dimensional integrals will be treated in a sequel), we
can, under the hypotheses of §1, write I(λ) as

I(λ) =
∫ ∞

0

∫ ∞
0

exp
[
− λ
(
xµ +

k∑
p=1

cpx
mpynp + yν

)]
dxdy, (3.1)

where all exponents are positive and all constants cp are positive real numbers (or
complex with positive real part). Let us define for each r = 1, 2, . . . , k

δr = 1− mr

µ
− nr

ν
, (3.2)

and set
m = (m1,m2, . . . ,mk), t = (t1, t2, . . . , tk),
n = (n1, n2, . . . , nk), δ = (δ1, δ2, . . . , δk).

}
(3.3)
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Asymptotics of Laplace integrals 587

Apply the integral representation, with the contour indented to the right of the
origin,

e−z =
1

2πi

∫ i∞

−i∞
Γ (t)z−t dt, | arg z| < 1

2π, z 6= 0, (3.4)

to each factor exp(−λcrxmrynr) in the integrand of (3.1) so that we can recast the
integral in (3.1), after interchanging the order of integration, as

I(λ) =
λ1/µ−1/ν

µν

(
1

2πi

∫ i∞

−i∞

)k
Γ (t)Γ

(
1−m · t

µ

)
Γ
(

1− n · t
ν

)
c−tλ−δ·t dt, (3.5)

where we have set

Γ (t) = Γ (t1)Γ (t2) · · ·Γ (tk), c−t = c−t11 c−t22 · · · c−tkk and dt = dt1dt2 · · ·dtk.
The ‘dot’ appearing between two vector quantities is just the usual Euclidean dot
product. The integration contours are indented to the right away from the origin, to
avoid the pole of the integrand present there.

By considering each integral in (3.5) separately, for example,

Jr =
1

2πi

∫ i∞

−i∞
Γ (tr)Γ

(
1−m · t

µ

)
Γ
(

1− n · t
ν

)
c−trr λ−δrtr dtr,

we can determine, reasoning as in Paris & Wood (1986, §2.1.3, and rule 1 of p. 21),
the sector in the complex λ-plane in which the integral Jr converges. By (2.1), we
have for tr = ρeiθ, ρ→∞,

log
∣∣∣∣Γ (tr)Γ

(
1−m · t

µ

)
Γ
(

1− n · t
ν

)
c−trr λ−δrtr

∣∣∣∣ ∼ δrρ cos θ log ρ+Aρ+B log ρ,

(3.6)
where

A = −δr(θ sin θ + cos θ)− cos θ(δr log |λ|+ log |cr|) + sin θ(δr arg λ+ arg cr)

−
(
mr

µ
+
nr
ν

)
π| sin θ| − cos θ · log

[(
mr

µ

)mr/µ (nr
ν

)nr/ν]

B = Re
{

1
µ

(1−m∗ · t∗) +
1
ν

(1− n∗ · t∗)
}
− 3

2 ;

here, we temporarily allow cr to be complex, and write m∗, n∗ and t∗ for those
quantities in (3.3) with the rth entry deleted. Since the integral defining Jr is taken
over the imaginary axis (except near the origin), we set θ = ± 1

2π to find the estimate
for the logarithm of the dominant real part of the integrand given by

−δr 1
2πρ−

(
mr

µ
+
nr
ν

)
πρ± ρ(δr arg λ+ arg cr)

= − 1
2πρ

(
1 +

mr

µ
+
nr
ν

)
± ρ(δr arg λ+ arg cr),

for large ρ. The integrand of Jr decays exponentially if this estimate tends to −∞
as ρ→∞ and hence, treating the cases of positive and negative δr separately, shows
that absolute convergence is assured if∣∣∣∣arg λ+

1
δr

arg cr

∣∣∣∣ < 1
2π

1 +mr/µ+ nr/ν

|δr| ; (3.7)
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588 D. Kaminski and R. B. Paris

the convergence of the integral Jr in the case of δr = 0 (when Jr is independent of
λ) is handled similarly. Evidently, the factor following 1

2π in the right-hand side of
(3.7) is greater than unity, so that each integral Jr defines an analytic function of λ
in a sector including the imaginary λ-axis when cr is positive.

Before developing expansions, we make the remark that our work also applies to
integrals of the form

Ĩ(λ) =
∫ ∞

0

∫ ∞
0

exp
[
− λ
(
xµ +

k∑
p=1

cpx
mpynp + yν

)]
xαyβ dxdy,

where α > −1, β > −1. To see this, we observe that Ĩ may be transformed into an
integral of the form (3.1) upon application of the simple change of variables x = Xp,
y = Y q. The differential xαyβ dxdy then becomes pqXp−1+αpY q−1+βq dXdY , whence
the choice p = 1/(1 + α), q = 1/(1 + β) removes the powers of X and Y from the
differential. The result is an integral of the type (3.1), albeit with different powers
appearing in the phase.

4. Asymptotics with one internal point

We begin our analysis by examining the special case k = 1 in (3.1) and (3.5),
namely

I(λ) =
∫ ∞

0

∫ ∞
0

exp[−λ(xµ + xm1yn1 + yν)] dxdy

=
λ−1/µ−1/ν

µν

1
2πi

∫ i∞

−i∞
Γ (t)Γ

(
1−m1t

µ

)
Γ
(

1− n1t

ν

)
λ−δ1t dt; (4.1)

the constant c1 in (3.1) has been removed by rescaling integration variables and
the large parameter λ. This is a simple one-dimensional contour integral, and its
analysis poses no difficulty. The asymptotics of (4.1) are obtained in conventional
fashion by displacing the integration contour to the left or right in the complex t-
plane, according as the dominant real part of the logarithm of the integrand tends
to plus or minus infinity, respectively (see Wong 1989, ch. III).

In the integrand of (4.1) let us set t = ρeiθ, |θ| < 1
2π. By employing the estimates

(2.1) as in (3.6), we find that the dominant real part of the logarithm of the integrand
of (4.1) behaves as

ρ cos θ log ρ
(

1− m1

µ
− n1

ν

)
= δ1ρ cos θ log ρ

for large ρ (recall (3.2)). This tends to plus or minus infinity according as δ1 > 0 or
δ1 < 0. If δ1 vanishes, we must conduct our analysis with finer estimates.

The sign of δ1 has geometric significance. To see this, we note that the back face
for the Newton diagram has equation

m

µ
+
n

ν
− 1 = 0, (4.2)

the equation of the line joining the points (µ, 0) and (0, ν). If a point (m,n) lies on the
same side of the line (4.2) as the origin, then (m,n) must satisfy m/µ+n/ν− 1 < 0.
Thus, the statement that δ1 > 0 is equivalent to the statement that P1 = (m1, n1)
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Asymptotics of Laplace integrals 589

lies below the back face (i.e. on the same side of (4.2) as the origin). The Newton
diagram in this case has two faces: a line segment joining (µ, 0) to P1, and a line
segment joining P1 to (0, ν) (see figure 2). If δ1 vanishes, then P1 must lie on the
back face, and if δ1 < 0, then P1 lies behind the back face (i.e. on the side of (4.2)
not containing the origin).

(a ) Vertex P1 in front of the back face
In this setting, we deduce that the dominant real part of the logarithm of the

integrand (3.6) tends to +∞, from which we conclude that contributions to the
asymptotic behaviour of (4.1) result from poles obtained by displacing the integration
contour to the right (see Slater 1966). Candidate poles arise in two sequences: one
from poles of Γ ((1−m1t)/µ), and one from poles of Γ ((1−n1t)/ν). For the present,
we will assume that these two sequences share no points, so that all such poles are
simple.

The poles of Γ ((1−m1t)/µ) are easily seen to occur at the points

t(1) = (1 + µk)/m1 = K/m1, k = 0, 1, 2, . . . , (4.3)

while poles of Γ ((1− n1t)/ν) occur at the points

t(2) = (1 + νk)/n1 = K ′/n1, k = 0, 1, 2, . . . ; (4.4)

here, use has been made of the notation presented in (2.2). Poles from the t(1)

sequence give rise to the formal asymptotic series (suppressing the factor λ−1/µ−1/ν

appearing in (4.1))

I1 =
1

m1ν

∑
k

(−1)k

k!
Γ
(
K

m1

)
Γ
(
m1 − n1K

m1ν

)
λ−δ1K/m1 , (4.5)

whereas poles from the t(2) sequence give rise to asymptotic series (again, suppressing
the power of λ appearing as a leading factor in (4.1))

I2 =
1
µn1

∑
k

(−1)k

k!
Γ
(
K ′

n1

)
Γ
(
n1 −m1K

′

µn1

)
λ−δ1K

′/n1 ; (4.6)

in each of the formal asymptotic sums constituting I1 and I2, the index k ranges
over all non-negative integers.

Upon assembling these two asymptotic series, we obtain the asymptotic expansion,
for λ→∞,

I(λ) ∼ λ−1/µ−1/ν(I1 + I2), (4.7)
where I(λ), I1 and I2 are given in (4.1), (4.5) and (4.6), respectively.

(b ) Vertex P1 on or behind the back face
We saw earlier that δ1 < 0 implies that the point P1 lies above the back face of

the Newton diagram. Indeed, the Newton diagram in this case is composed only of
the back face joining (µ, 0) to (0, ν). The dominant real part of the logarithm of the
integrand of (4.1) clearly tends to −∞, so we must displace the integration contour
in (4.1) to the left in order to obtain the asymptotics of I(λ).

Doing so, we find that the only poles appearing in our evaluations are those occur-
ring at the non-negative integers, t = −k, k = 0, 1, 2, . . . . The expansion of I(λ) is
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590 D. Kaminski and R. B. Paris

then immediate:

I(λ) ∼ λ−1/µ−1/ν

µν

∑
k

(−1)k

k!
Γ
(

1 +m1k

µ

)
Γ
(

1 + n1k

ν

)
λδ1k, (4.8)

for λ→∞. We observe that this is precisely the expansion that results from (4.1) by
developing exp(−λxm1yn1) into its Maclaurin series in x and y, followed by termwise
integration.

We also note that this series is the convergent series expansion for (4.1) that
results in the case δ1 > 0 when the integration contour is displaced to the left, and
can be used to compute I(λ) for modest values of λ for δ1 > 0. Convergence in this
case follows from a straightforward application of the ratio test and the well-known
asymptotic behaviour of the ratio of Γ functions (Olver 1974, §5.1) which shows that
the ratio of consecutive terms in (4.8) has the large-k behaviour

1
k + 1

(
m1k

µ

)m1/µ(n1k

ν

)n1/ν

|λ|δ1 ∼
(
m1

µ

)m1/µ (n1

ν

)n1/ν

k−δ1 |λ|δ1 . (4.9)

However, if δ1 > 0, then we must have m1 < µ and n1 < ν, so all factors in the above
ratio are less than unity. Absolute convergence of the series (4.8) in the case δ1 > 0
follows.

The case of δ1 = 0 corresponds to the situation where P1 is located on the back
face, between the points (µ, 0) and (0, ν). Because δ1 = 0, the integral (4.1) no longer
has λ appearing in the integrand, so we need only evaluate the integral. The result,
a convergent series,

I0 ≡ 1
2πi

∫ i∞

−i∞
Γ (t)Γ

(
1−m1t

µ

)
Γ
(

1− n1t

ν

)
dt

=
∞∑
k=0

(−1)k

k!
Γ
(

1 +m1k

µ

)
Γ
(

1 + n1k

ν

)
,

gives the evaluation

I(λ) =
λ−1/µ−1/ν

µν
I0. (4.10)

Convergence of the series representation of I0 follows from the discussion surround-
ing (4.9).

(c ) Remoteness and order of leading terms
We demonstrate here the interesting relationship that exists between the order of

the leading terms in the expansions (4.7), (4.8) and (4.10), and the remoteness of
the Newton diagram: the order of the leading term in the expansion of I(λ) is equal
to the remoteness of the Newton diagram of the phase (cf. Vasil’ev 1977).

Suppose that P1 lies below the 45◦ line in the mn-plane, i.e. that m1 > n1, and
that δ1 > 0. (A similar argument can be brought to bear for the case where P1 lies
above the 45◦ line, i.e. n1 > m1.) Let L1 and L2 be the lines through (0, ν) and
P1, and P1 and (µ, 0), respectively. Let m∗1 and m∗2 be the abscissas of the points of
intersection of L1 and L2 with the 45◦ line, respectively (see figure 2).

Evidently, we must have m∗2 < m∗1, so −1/m∗2 < −1/m∗1. Elementary analytical
geometry furnishes us with m∗1 = νm1/(m1 + ν − n1) and m∗2 = µn1/(µ+ n1 −m1).
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Figure 2. Geometry of the Newton diagram for the case δ1 > 0.

From (4.7), the leading terms in the expansion of I(λ) for the case δ1 > 0 give rise
to

I(λ) ∼ λ−1/µ−1/ν−δ1/m1

m1ν
Γ
(

1
m1

)
Γ
(
m1 − n1

m1ν

)
+
λ−1/µ−1/ν−δ1/n1

µn1
Γ
(

1
n1

)
Γ
(
n1 −m1

µn1

)
.

The first term has order

− 1
µ
− 1
ν
− δ1

m1
= −1

ν
+

n1

m1ν
− 1
m1

= − 1
m∗1

,

and the second,

− 1
µ
− 1
ν
− δ1

n1
= − 1

µ
+
m1

n1µ
− 1
n1

= − 1
m∗2

.

In view of the inequality −1/m∗2 < −1/m∗1, we see that the dominant term in the
expansion (4.7) must come from the term of order −1/m∗1, i.e. from the term whose
order is the same as the remoteness of the Newton diagram.

If, now, δ1 6 0, P1 lies on or behind the back face (the Newton diagram in these
cases) and the remoteness is then just −1/µ− 1/ν. This is the same as the order of
the leading term in (4.8) or the order of the single term in (4.10).

Of special interest is the case where P1 lies on the 45◦ line and in front of the back
face. In this case, m1 = n1, and from examination of (4.3) and (4.4), it is apparent
that whatever the choices of µ and ν, the leading term in the expansion of I(λ)
will contain a factor of log λ, stemming from the presence of a double pole in the
Mellin–Barnes representation (4.1). This situation is explored in detail in §7.

5. Asymptotics with two internal points

With k = 2 in (3.1) and (3.5), our integral assumes the form

I(λ) =
λ−1/µ−1/ν

µν

(
1

2πi

)2 ∫ i∞

−i∞

∫ i∞

−i∞
Γ (t1)Γ (t2)Γ

(
1−m · t

µ

)
×Γ

(
1− n · t

ν

)
λ−δ·t dt1dt2; (5.1)

we are using the vector representations in (3.3) with k = 2, and the constants c1
and c2 in (3.1) have been set, for ease of discussion, to unity. It is a simple matter
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to restore the constants (see §6 b, for example). We assume throughout this section
that all poles of the integrand are simple.

With two internal points present, say P1 = (m1, n1) and P2 = (m2, n2), an addi-
tional possible shape of the Newton diagram arises: we can have: (a) both internal
points acting as vertices of the Newton diagram, so that the diagram is formed from
three non-collinear line segments; (b) both internal points on the Newton diagram,
but with two of the three line segments collinear; (c) one point only on the Newton
diagram, with the other internal point behind any of the line segment ‘faces’ of the
Newton diagram; or finally, (d) both internal points could lie on or behind the back
face joining (µ, 0) to (0, ν), so that the Newton diagram is just the back face. We
shall consider the asymptotics of I(λ) that arise in each of the cases that keep at least
one internal point in front of the back face, and in the course of our analysis, two
principles become apparent: first, the compound asymptotic expansions that result
will be formed from series associated with each of the faces of the Newton diagram;
second, the presence of internal points lying behind the Newton diagram do not play
any role in the leading terms of the expansions.

Before proceeding further in our investigations, let us impose some structure on
our points P1 and P2: we shall assume that µ > m1 > m2, n1 < n2 < ν, so that the
quantities M ≡ m1 −m2 and N ≡ n2 − n1 are positive.

(a ) The convex case
By the convex case, we mean that both P1 and P2 are vertices on the Newton

diagram, and that all three line segments comprising the diagram are non-collinear
(i.e. no two line segments are collinear). In this setting, we shall find it convenient
to introduce the quantity

∆ ≡ m1n2 −m2n1. (5.2)
Observe that ∆ is the signed area of the parallelogram generated by the vectors P1,
P2, in that order, where P is the position vector defined by P . Since the ordering
imposed on P1 and P2 gives P1 and P2 a positive orientation, the quantity ∆ must
be positive.

Additionally, elementary analytic geometry reveals that the line through P1 and
P2 cuts the m- and n-axes at ∆/N and ∆/M , respectively. By considering the inter-
section points of lines through (µ, 0) and P1, and P2 and (0, ν), with the coordinate
axes, we also find

νm2N

ν − n2
< ∆ < µN and

µn1M

µ−m1
< ∆ < νM ; (5.3)

the intersection of the line through (0, ν) and P2 with the m-axis is indicated as
(1m) in figure 3; that of the line through P1 and P2 with the m-axis labelled (2m)
in the figure, and so on. The labelled intersection points (1m), (2m), (1n) and (2n)
correspond to m = m2ν/(ν − n2), m = ∆/N , n = µn1/(µ − m1) amd n = ∆/M ,
respectively.

Let us begin by displacing the t2 contour in (5.1) first. With t2 = ρeiθ, |θ| < 1
2π,

we see that the logarithm of the modulus of the integrand of (5.1) exhibits the large
ρ behaviour

δ2ρ cos θ log ρ+O(ρ).
Since P2 is in front of the back face (cf. equation (4.2)), the quantity δ2 must be
positive from which it follows that the order estimate above tends to +∞. Thus,

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Asymptotics of Laplace integrals 593

m

n

A
A
A
A
A

@
@@

@
@@

HHHHH

A
A
A
A
A
@
@@HHHHH

r
r
r

r
P2

P1

µ

ν

(1m) (2m)

(1n)

(2n)

Figure 3. Newton diagram for two internal points in the ‘convex’ case. The labels (1m), (2m),
(1n) and (2n) are described in the text.

we displace the t2 contour to the right to pick up contributions to the asymptotics
of I(λ). Candidate poles arise in two sequences (here assumed to share no points
in common) determined by the poles of Γ ((1−m1t1 −m2t2)/µ) and Γ ((1− n1t1 −
n2t2)/ν).

The poles of the first of these Γ -functions are located at

t
(1)
2 = (K −m1t1)/m2, k = 0, 1, 2, . . . , (5.4)

while those of the second occur at

t
(2)
2 = (K ′ − n1t1)/n2, k = 0, 1, 2, . . . (5.5)

(cf. (4.3) and (4.4)). Poles from the t(1)
2 sequence give rise to the formal sum (omitting

the leading factor of λ−1/µ−1/ν)

I1 =
1

m2ν

∑
k

(−1)k

k!
1

2πi

∫ i∞

−i∞
Γ (t1)Γ (t(1)

2 )Γ

(
1− n1t1 − n2t

(1)
2

ν

)
λ−δ·t dt1, (5.6)

with δ · t = δ1t1 + δ2t
(1)
2 , and those from the t(2)

2 sequence,

I2 =
1
µn2

∑
k

(−1)k

k!
1

2πi

∫ i∞

−i∞
Γ (t1)Γ (t(2)

2 )Γ

(
1−m1t1 −m2t

(2)
2

µ

)
λ−δ·t dt1, (5.7)

with δ · t = δ1t1 + δ2t
(2)
2 .

The integrals in the I1 series have integrands which reduce to

Γ (t1)Γ
(
K −m1t1

m2

)
Γ
(
m2 − n2K + ∆t1

m2ν

)
λ−δ·t,

from which we find, with t1 = ρeiθ, |θ| < 1
2π, has the logarithm of the modulus

behaving for large ρ as

ρ cos θ log ρ(∆− νM)/m2ν +O(ρ). (5.8)

From (5.3), we see that the factor following log ρ is negative, whence the logarithm
of the modulus of the integrand tends to −∞ as ρ→∞. We must therefore displace
the t1 contour in each integral in I1 to the left. We find that there are three sequences
of candidate poles arising: one each from the Γ -functions appearing in the integrands
in I1.
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The factor Γ (t1) has its poles at t
(1)
1 = −l, l = 0, 1, 2, . . . , whereas the second

factor, Γ (t(1)
2 ) = Γ ((K −m1t1)/m2) would have its poles at points (K +m2l)/m1,

l a non-negative integer. However, it is clear that these points are positive, for all
non-negative integral values of k and l, so no poles of this factor are encountered
in displacing the t1 contour to the left. The final sequence of candidate poles arises
from poles of Γ ((1− n1t1 − n2t

(1)
2 )/ν) = Γ ((m2 − n2K + ∆t1)/m2ν), given by

t
(2)
1 =

n2

∆
K − m2

∆
(1 + νl) =

n2K −m2L
′

∆
, (5.9)

for non-negative integral k and l satisfying t(2)
1 6 0. Here, we have set 1 + νl ≡ L′

(recall (2.2)).
The t(1)

1 sequence of poles in I1 gives rise to the formal asymptotic series (again,
suppressing the factor λ−1/µ−1/ν)

I11 =
1

m2ν

∑
k,l

(−1)k+l

k!l!
Γ (t(1)

2 (t(1)
1 ))Γ

(
1− n1t

(1)
1 − n2t

(1)
2 (t(1)

1 )
ν

)
λ−δ·t

=
1

m2ν

∑
k,l

f11(k, l), (5.10)

where

f11(k, l) ≡ (−1)k+l

k!l!
Γ
(
K +m1l

m2

)
Γ
(
m2 − n2K −∆l

m2ν

)
λ−δ·t, (5.11)

with

− δ · t = −δ1t
(1)
1 − δ2t

(1)
2 (t(1)

1 ) = − δ2

m2
K +

∆− νM
m2ν

l. (5.12)

The t(2)
1 sequence of poles in I1 generates the formal asymptotic series (with sup-

pressed leading factor of λ−1/µ−1/ν)

I12 =
1
∆

∑
k,l′

(−1)k+l

k!l!
Γ (t(2)

1 )Γ (t(1)
2 (t(2)

1 ))λ−δ·t =
1
∆

∑
k,l′

f12(k, l), (5.13)

where

f12(k, l) ≡ (−1)k+l

k!l!
Γ
(
n2K −m2L

′

∆

)
Γ
(
m1L

′ − n1K

∆

)
λ−δ·t, (5.14)

with

− δ · t = −δ1t
(2)
1 − δ2t

(1)
2 (t(2)

1 ) =
∆− µN
µ∆

K +
∆− νM
ν∆

L′. (5.15)

The prime attached to the summation index l appearing in (5.13) indicates that the
index is subject to the restriction imposed earlier on (5.9), namely that t(2)

1 6 0.
We repeat the analysis for the integrals appearing in the series I2. The integrals

in (5.7) have integrands which reduce to

Γ (t1)Γ
(
K ′ − n1t1

n2

)
Γ
(
n2 −m2K

′ −∆t1
µn2

)
λ−δ·t,

which has, with t1 = ρeiθ, |θ| < 1
2π, the logarithm of the modulus behaving for large

ρ as
ρ cos θ log ρ(µN −∆)/µn2 +O(ρ).
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From (5.3), we see that the factor following log ρ is positive whence the logarithm of
the modulus of the integrand tends to +∞ as ρ→∞. Accordingly, we must displace
the contour to the right to pick up poles contributing to the asymptotics. We find that
there are two sequences of relevant poles: the first, from poles of Γ ((K ′ − n1t1)/n2),
given by

t
(1)
1 = (K ′ + n2l)/n1; (5.16)

the second, from poles of Γ ((n2 −m2K
′ −∆t1)/µn2), given by

t
(2)
1 =

n2

∆
(1 + µl)− m2K

′

∆
=
n2L−m2K

′

∆
, (5.17)

where we have set 1 + µl ≡ L (see (2.2)). In (5.16) and (5.17), the parameter l is a
non-negative integer, but in the case of t(2)

1 , l is subject to the additional constraint
t
(2)
1 > 0.

The t(1)
1 sequence of poles in (5.16) gives rise to the formal asymptotic series (with

omission of the λ factor as before)

I21 =
1
µn1

∑
k,l

(−1)k+l

k!l!
Γ (t(2)

2 (t(1)
1 ))Γ

(
1−m1t

(1)
1 −m2t

(2)
2 (t(1)

1 )
µ

)
λ−δ·t

=
1
µn1

∑
k,l

f21(k, l), (5.18)

where

f21(k, l) ≡ (−1)k+l

k!l!
Γ
(
K ′ + n2l

n1

)
Γ
(
n1 −m1K

′ −∆l
µn1

)
λ−δ·t, (5.19)

with

− δ · t = −δ1t
(1)
1 − δ2t

(2)
2 (t(1)

1 ) = − δ1

n1
K ′ +

∆− µN
µn1

l. (5.20)

The t(2)
1 sequence gives rise to

I22 =
1
∆

∑
k,l′

(−1)k+l

k!l!
Γ (t(2)

1 )Γ (t(2)
2 (t(2)

1 ))λ−δ·t =
1
∆

∑
k,l′

f12(l, k), (5.21)

where the prime attached to l indicates that it is subject to the restriction t
(2)
1 > 0.

Collecting together the expansions, we find that

I(λ) ∼ λ−1/µ−1/ν(I11 + I12 + I21 + I22),

for large λ. However, we note that, if we relabel the summation indices in I22 by
putting k → l and l→ k, then the linear restriction t

(2)
1 = n2L/∆−m2K

′/∆ > 0
becomes the constraint n2K/∆−m2L

′/∆ > 0, exactly the complement of the con-
straint t(2)

1 = n2K/∆−m2L
′/∆ 6 0 which governs I12. Thus, the two series I12 and

I22 may be fused into a single series without constraint (save that of k and l being
non-negative integers), to give the final asymptotic form

I(λ) ∼ λ−1/µ−1/ν
{

1
m2ν

∑
k,l

f11(k, l) +
1
∆

∑
k,l

f12(k, l) +
1
µn1

∑
k,l

f21(k, l)
}
, (5.22)

for λ → ∞. Observe that the first series associates in a natural way with the face
of the Newton diagram joining the vertices (0, ν) and P2, the second with the face
joining P1 and P2, and the third with the face joining (µ, 0) with P1.
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(b ) Two collinear faces
Let us translate P2 as described in the convex case upwards so that P2 lies on the

line joining P1 to (0, ν). The Newton diagram still has three faces—(0, ν) to P2, P2 to
P1 and P1 to (µ, 0)—but now those coincident with P2 are collinear (see figure 4(a)).
It still holds that δ1 and δ2 are positive, and ∆ is positive. The significant difference
from the convex case is that one of the two inequalities comprising (5.3) fails, and
we have ν = ∆/M .

As both δ1 and δ2 are still positive, we proceed to displace integration contours in
(5.1) as before, which yields the same two series of contributions I1 and I2 given in
(5.6) and (5.7), respectively. Indeed, the analysis of the series I2 carries over without
alteration in the present circumstance, but an examination of the logarithm of the
modulus of the integrands in (5.6) gives a large ρ behaviour for (5.8) of 0 (measured
against the scale ρ log ρ). Furthermore, the powers of λ in the integrands of (5.6) are
now independent of t1:

δ1t1 + δ2t
(1)
2 =

δ2

m2
K

(see (5.12)).
Thus, I1 can be written as

I1 =
1

m2ν

∑
k

(−1)k

k!
J(k)λ−δ2K/m2 ,

with

J(k) ≡ 1
2πi

∫ i∞

−i∞
Γ (t)Γ

(
K −m1t

m2

)
Γ
(
m2 − n2K + ∆t

m2ν

)
dt.

By employing (2.1), with θ = ±1
2π, it is easy to see that this integral converges and

further, for t = ρeiθ with |θ| < 1
2π, the logarithm of the modulus of the integrand of

J(k) is seen exhibit the dominant large-ρ behaviour

ρ cos θ log
[(

∆
m2ν

)∆/(m2ν)(
m2

m1

)m1/m2
]
.

The term inside the logarithm can be seen to be less than unity by using the fact that
∆ = νM and the hypothesis m2 < m1, from which we conclude that a convergent
series representation for J(k) can be obtained by displacing the integration contour
to the right. In doing this, we encounter poles at (K +m2l)/m1 for non-negative
integers l, and at n2K/∆−m2L

′/∆, but only for those non-negative integers l ren-
dering this last expression positive. Observe that the latter expression is t(2)

1 of (5.9),
with the complementary inequality used there.

After displacing the t contour for J(k) to the right, we arrive at the evaluation

J(k) =
m2

m1
sk − m2ν

∆

∑
l′

(−1)l

l!
f1(k, l), (5.23)

where the prime on the index l in the finite sum indicates the restriction discussed
in the previous paragraph, and where we have set

sk =
∞∑
l=0

(−1)l

l!
Γ
(
K +m2l

m1

)
Γ
(
m1 − n1K + ∆l

m1ν

)
, (5.24)

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Asymptotics of Laplace integrals 597

@
@
@
@
@
@
@
@
@
@

@
@
@
@
@
@
@
@
@
@

J
J
J
J
J
J
JJHHHHH

J
J
J
J
J
J
JJHHHHH

r
r

r
r

r r

r r

m

n

m

n

(a) (b)µ

ν

µ

ν

P1

P2

P1

P2

Figure 4. Newton diagrams for two internal points: (a) the collinear case and (b) P2 behind the
Newton diagram but in front of the back face.

f1(k, l) = Γ
(
n2K −m2L

′

∆

)
Γ
(−n1K +m1L

′

∆

)
.

Use of the representation (5.23) together with the expansions (5.18) and (5.21) then
gives the large-λ expansion

I(λ) ∼ λ−1/µ−1/ν
{

1
m1ν

∑
k

(−1)k

k!
skλ

−δ2K/m2 − 1
∆

∑
k,l′

(−1)k+l

k!l!
f1(k, l)λ−δ2K/m2

+
1
∆

∑
k,l′

f12(k, l) +
1
µn1

∑
k,l

f21(k, l)
}
.

Some further simplification is possible, after the fashion preceding (5.22). Observe
that after relabelling k → l, l → k in the sum for I22 (corresponding to the second
sum above with restricted argument), we find that the two restricted sums, both with
leading factors of ±1/∆, have exactly the same range of arguments. Furthermore,
elementary arithmetic shows, for the case where P2 lies on the line joining P1 and
(0, ν), that −δ2/m2 = (∆−µN)/(µ∆). Thus, the two series involving leading factors
of ±1/∆ annihilate, leaving the expansion

I(λ) ∼ λ−1/µ−1/ν
{

1
m1ν

∑
k

(−1)k

k!
skλ

−δ2K/m2 +
1
µn1

∑
k,l

f21(k, l)
}
,

where f21 is given in (5.19) and sk is defined in (5.24). The first series in this expansion
can be associated with the face of the Newton diagram which joins (0, ν) to P1 (and
which contains the vertex P2 as well), and the second with the face connecting the
vertices P1 and (µ, 0).

(c ) One internal point behind the Newton diagram
Let us suppose that P2 now lies behind the Newton diagram, but in front of the

back face (see figure 4b). We suppose still that µ > m1 > m2 and n1 < n2 < ν as
before. In this circumstance, ∆ remains positive, and both δ1 and δ2 are positive.

If we proceed as in the convex case, and select again t2 as the integration variable
to start with in (5.1), then we find that the t2 contour is to be displaced to the right,
with appropriate contributions to the asymptotics of I(λ) stemming from the t(1)

2
and t

(2)
2 series as before (cf. (5.4) and (5.5)). The resulting formal asymptotic series

(5.6) and (5.6) must therefore still apply in the present case.
If we examine the logarithms of the moduli of the integrals appearing in I1 and I2,
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we find that, whereas the integrals for the I2 series still have their integration contours
displaced to the right, the integrals in the I1 series must now have their contours
displaced to the right , in marked contrast to the situation occuring in the convex
case. To see this, note that the integrals in (5.6) have integrands with logarithms of
the dominant real part governed by

ρ cos θ log ρ(∆−Mν)/m2ν +O(ρ),

which tends to ∞ as ρ→∞, in view of the fact that since the line through P1 and
P2 now meets the n-axis above (0, ν), the inequality ∆ > νM now holds, in contrast
with the convex case (5.3).

Candidate poles for evaluating integrals in I1 are to be found in the two sequences
now: one from poles of Γ (t(1)

2 ) (which was not used in the convex case), and one from
poles of Γ ((1− n1t1 − n2t

(1)
2 )/ν) = Γ ((m2 − n2K + ∆t1)/m2ν) (which was used in

the convex case). The first sequence of poles is the t(1)
1 sequence, with

t
(1)
1 = (K +m2l)/m1; (5.25)

the t(2)
1 sequence is given by (5.9), with the restriction t

(2)
1 > 0 holding, in view of

the displacement of the integration contour to the right.
Poles from (5.25) give rise to the formal asymptotic series

I11 =
1

m1ν

∑
k,l

(−1)k+l

k!l!
Γ (t(1)

1 )Γ

(
1− n1t

(1)
1 − n2t

(1)
2 (t(1)

1 )
ν

)
λ−δ·t

=
1

m1ν

∑
k,l

f∗11(k, l),

where

f∗11(k, l) ≡ (−1)k+l

k!l!
Γ
(
K +m2l

m1

)
Γ
(
m1 − n1K + ∆l

m1ν

)
λ−δ·t, (5.26)

with

− δ · t = −δ1t
(1)
1 − δ2t

(1)
2 (t(1)

1 ) = − δ1

m1
K +

νM −∆
m1ν

l. (5.27)

Poles from (5.9) give rise to −I12, with I12 as in (5.13), (5.14) and (5.15), but with
the constraint replaced by t(2)

1 > 0.
The t(2)

2 sequence, of course, offers up the contributions I21 and I22 as before (in
(5.18), (5.21) and associated equations). The restriction on k and l accompanying
I22 is the same as that for −I12, so rather than adding together, as was the case in
the convex setting, these two series annihilate, leaving us with the large-λ expansion

I(λ) ∼ λ−1/µ−1/ν(I11 + I21),

or

I(λ) ∼ λ−1/µ−1/ν
{

1
m1ν

∑
k,l

f∗11(k, l) +
1
µn1

∑
k,l

f21(k, l)
}
, (5.28)

with f∗11 and f21 given by (5.11), (5.12), (5.26) and (5.27). The correspondence with
the sides of the Newton polygon is again readily apparent: the first series in (5.28)
is associated with the face defined by (0, ν) and P1, and the second with the face
defined by (µ, 0) and P1.

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Asymptotics of Laplace integrals 599

@
@
@
@
@
@
@
@
@
@

@
@
@
@
@
@
@
@
@
@

J
J
J
J
J
J
JJHHHHH

J
J
J
J
J
J
JJHHHHH

r
r

r

r

r r

r r

m

n

m

n

(a) (b)µ

ν

µ

ν

P1

P2

P1

P2

Figure 5. Newton diagrams for two internal points: (a) P2 on the back face; and (b) P2 behind
the back face.

(d ) One internal point on or behind the back face
We suppose in this section that P2 either lies on the back face joining (µ, 0) to

(0, ν) (as depicted in figure 5a), or behind it (as in figure 5b); in this setting, it follows
that δ2 = 0 or δ2 < 0, respectively.

If P2 is on the back face, then δ2 vanishes, and the integrand (5.1) has no t2-
dependence. Accordingly, if we elect to displace the t2 contour first, then we shall
have to examine the lower order terms in the dominant part of the logarithm of
the modulus of the integrand, given in (3.6), in order to determine the direction in
which the integration contour is to be translated. This additional complication can
be avoided by considering the t1 integral first. For the t1 integral, with t1 = ρeiθ,
|θ| < 1

2π, we find that the logarithm of the modulus of the integrand behaves as

δ1ρ cos θ log ρ+O(ρ),

for large ρ. Since P1 lies in front of the back face, δ1 > 0, and so we see that the
above estimate tends to∞ as ρ→∞. Accordingly, we displace the t1 contour to the
right. Candidate poles arise in two sequences: from poles of Γ ((1−m1t1 −m2t2)/µ)
we have

t
(1)
1 = (K −m2t2)/m1,

and from poles of Γ ((1− n1t1 − n2t2)/ν) we have

t
(2)
1 = (K ′ − n2t2)/n1; (5.29)

as usual, k is a non-negative integer, and the sequences of poles we generate through-
out are assumed to be distinct.

The t(1)
1 sequence of poles gives rise to the formal series (suppressing a leading

factor of λ−1/µ−1/ν)

I1 =
1

m1ν

∑
k

(−1)k

k!
1

2πi

∫ i∞

−i∞
Γ (t(1)

1 )Γ (t2)Γ

(
1− n1t

(1)
1 − n2t2
ν

)
λ−δ1t

(1)
1 dt2,

(5.30)
and similarly, t(2)

1 gives rise to

I2 =
1
µn1

∑
k

(−1)k

k!
1

2πi

∫ i∞

−i∞
Γ (t(2)

1 )Γ (t2)Γ

(
1−m1t

(1)
1 −m2t2
µ

)
λ−δ1t

(2)
1 dt2.

(5.31)
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The integrals appearing in the I1 series (5.30) have integrands which reduce to

Γ (t2)Γ
(
K −m2t2

m1

)
Γ
(
m1 − n1K −∆t2

m1ν

)
λ−δ1t

(1)
1 ,

which, with t2 = ρeiθ, |θ| < 1
2π, has logarithm of the modulus governed by

ρ cos θ log ρ(Mν −∆)/m1ν +O(ρ),

for large ρ. Because ∆/M > ν in the case δ2 6 0, this estimate tends to −∞ as
ρ→∞. Therefore, the t2 contour must be displaced to the left to obtain asymptotic
behaviour. We find that there are two sequences of t2 poles that contribute: t(1)

2 = −l,
and t

(2)
2 = (−n1K +m1L

′)/∆; here, l is a non-negative integer, and t
(2)
2 must be

subject to the restriction t
(2)
2 6 0.

The t(1)
2 sequence of poles gives rise to the formal asymptotic series

I11 =
1

m1ν

∑
k,l

f∗11(k, l), (5.32)

where f∗11 is given in (5.26), and −δ · t = −δ1t
(1)
1 (t(1)

2 ) = −δ1(K +m2l)/m1 is also
given by (5.27); to see this latter point, apply the identities

m2δ1 −m1δ2 = ∆/ν −M and n1δ2 − n2δ1 = ∆/µ−N. (5.33)

The t(2)
2 sequence yields the formal asymptotic sum

I12 = − 1
∆

∑
k,l′

f12(k, l), (5.34)

where f12 is given in (5.14) and δ · t is given in (5.15). The prime on l indicates the
presence of the restriction on the range of l dictated by t(2)

2 6 0.
The integrals appearing in the I2 series (5.31) have integrands which reduce to

Γ (t2)Γ
(
K ′ − n2t2

n1

)
Γ
(
n1 −m1K

′ + ∆t2
µn1

)
λ−δ1t

(2)
1 ,

which, with t2 = ρeiθ, |θ| < 1
2π, has logarithm of the modulus governed by

ρ cos θ log ρ(∆− µN)/µn1 +O(ρ),

for large ρ. Unlike the situation for I1, the first of the inequalities in (5.3) continues to
hold, from which we see that the above estimate tends to −∞ as ρ→∞ and so the t2
contour must be displaced to the left. Candidate poles arise again in two sequences,
t
(1)
2 = −l and t(2)

2 = (−n1K +m1L
′)/∆; as before, l is a non-negative integer and t(2)

2
is subject to the constraint t(2)

2 6 0.
The t(1)

2 sequence of poles gives rise to the formal asymptotic series

I21 =
1

m1ν

∑
k,l

f21(k, l), (5.35)

where f21 is given in (5.19) and δ · t given in (5.20). (Use (5.33) in −δ · t =
−δ1t

(2)
1 (t(1)

2 ) = −δ1(K ′ + n2l)/n1 to see this.) The t
(2)
2 sequence yields the formal

asymptotic sum

I22 =
1
∆

∑
k,l′

f12(l, k), (5.36)

where f12 is given in (5.14), and δ · t is given in (5.15).
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Collecting expansions (5.32), (5.34), (5.35) and (5.36), and restoring the leading
factor of λ−1/µ−1/ν , we obtain the asymptotic expansion

I(λ) ∼ λ−1/µ−1/ν(I11 + I12 + I21 + I22),

for λ → ∞. Further reduction is possible: observe that the inequalities governing
the restrictions on the sums in I12 and I22 are identical (after relabelling the indices
in one of the sums), and that I12 is the negative of I22. Therefore, these two series
annihilate to yield finally

I(λ) ∼ λ−1/µ−1/ν
{

1
m1ν

∑
k,l

f∗11(k, l) +
1
µn1

∑
k,l

f21(k, l)
}
, (5.37)

as λ → ∞. For the case of δ2 < 0, we find that the same expansion (5.37) results
and we omit the derivation.

We mention that the expansions obtained in the cases where P2 was behind the
Newton diagram (either in front, on, or behind the back face) can also all be devel-
oped through termwise integration. Beginning with

I(λ) =
∫ ∞

0

∫ ∞
0

exp[−λ(xµ + xm1yn1 + yν)] exp(−λxm2yn2) dxdy,

we develop the exponential factor involving the monomial xm2yn2 into its Maclaurin
series and interchange the order of integration and summation to arrive at

I(λ) ∼
∞∑
k=0

(−1)k

k!
λkIk(λ), (5.38)

where

Ik(λ) =
∫ ∞

0

∫ ∞
0

exp[−λ(xµ + xm1yn1 + yν)]xkm2ykn2 dxdy

=
λ−(1+km2)/µ−(1+kn2)/ν

µν

1
2πi

∫ i∞

−i∞
Γ (t)Γ

(
1 + km2 −m1t

µ

)
×Γ

(
1 + kn2 − n1t

ν

)
λ−δ1t dt.

Since P1 is in front of the back face, the contour for Ik must be displaced to the
right. Proceeding as we have done for the case of a single internal point (cf. §4 a), we
obtain an asymptotic expansion for each Ik, which must then be inserted into (5.38)
to produce the previously obtained asymptotic expansions for I(λ).

All the expansions obtained in §§ 5 a–d have repeatedly made use of the assumption
that sequences of poles encountered in each case under analysis were simple. In most
applications, however, double poles can be expected to arise, and are a certainty
whenever µ and ν are rational. In these circumstances, one proceeds as we have done
here with appropriate steps taken to compute residues of double poles. The presence
of double poles in residue calculations will generate log λ terms in the asymptotic
expansions produced. Examples illustrating how one deals with violations of the
simple-poles-only hypothesis are presented in §7.

(e ) Remoteness and order of leading terms
As we have seen, when one of the internal points lies behind the Newton dia-

gram, only two expansions result (one for each face of the diagram), and upon closer
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Figure 6. Portion of the Newton diagram for two internal points in the case where P1 and P2
both lie below the diagonal m = n.

examination of the leading terms for each such expansion, it is apparent that the
coordinates of the point behind the Newton diagram do not appear (set k = l = 0 in
the expansions to see this). Thus, the treatment of remoteness in this case is identical
to that for the case of one internal point in front of the back face (cf. §4 c).

Consequently, we need only examine remoteness in the convex case detailed in
§5 a. For the convex case, the leading terms in the asymptotic expansion of I(λ) are
given by (cf. equations (5.22), (5.11), (5.14) and (5.19))

I(λ) ∼ λ−1/µ−1/ν
{

1
m2ν

Γ
(

1
m2

)
Γ
(
m2 − n2

m2ν

)
λ−δ2/m2 +

1
∆

Γ
(
n2 −m2

∆

)
×Γ
(
m1 − n1

∆

)
λ(∆−µN)/µ∆+(∆−Mν)/ν∆ +

1
µn1

Γ
(

1
n1

)
Γ
(
n1 −m1

µn1

)
λ−δ1/n1

}
.

(5.39)

There are only three possible cases to address: both internal points P1 and P2 lie
below the m = n line; the points ‘straddle’ the m = n line (i.e. one lies above the line
and one lies below); and both lie above the m = n line. By symmetry considerations,
we can reduce this further by discarding one of the cases where both points lie on
the same side of the diagonal. Let m∗1, m∗2 and m∗3 be the abscissas of the points
of intersection of the line m = n with each of the lines L1, L2 and L3, defined,
respectively, as the line generated by (0, ν) and P2, P2 and P1, and finally P1 and
(µ, 0). Elementary analytical geometry gives us

m∗1 =
m2ν

m2 + ν − n2
, m∗2 =

∆
M +N

, m∗3 =
µn1

µ−m1 + n1
.

After distributing the factor λ−1/µ−1/ν across all three terms in (5.39), we see that
the orders of the leading terms in (5.39) have a particularly elegant expression in
terms of the quantities m∗1, m∗2, m∗3: the first term has order −1/m∗1, the second has
order −1/m∗2 and the third has order −1/m∗3.

Let us suppose, then, that both points P1 and P2 lie below the m = n line (see fig-
ure 6). Evidently, we have the ordering m∗3 < m∗2 < m∗1, whence −1/m∗3 < −1/m∗2 <
−1/m∗1. The dominant leading term is therefore the one of order −1/m∗1, correspond-
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Figure 7. The Newton diagram for two internal points in the case where P1 and P2 ‘straddle’
the diagonal m = n.

ing to the remoteness of the Newton diagram. For this case, I(λ) has the dominant
asymptotic behaviour

I(λ) ∼ λ−1/m∗1

m2ν
Γ
(

1
m2

)
Γ
(
m2 − n2

m2ν

)
,

for λ → ∞. Observe that all arguments of the Γ functions in this leading term are
positive in view of the fact that P2 below the m = n line implies m2 > n2.

When the points P1 and P2 straddle the diagonal m = n, as depicted in figure 7, we
arrive at a different ordering of the abscissas m∗i . In this case, we find m∗1 < m∗3 < m∗2
which in turn yields −1/m∗1 < −1/m∗3 < −1/m∗2. From this, it is apparent that the
dominant leading term in (5.39) is the second one corresponding to −1/m∗2, namely

I(λ) ∼ λ−1/m∗2

∆
Γ
(
n2 −m2

∆

)
Γ
(
m1 − n1

∆

)
.

The quantity −1/m∗2 is the remoteness of the Newton diagram in this instance. Since
P2 lies above the diagonal and P1 lies below the diagonal, we must also have n2 > m2
and m1 > n1 so that the Γ functions in the leading term have positive arguments.

(f ) Geometric interpretation of the asymptotic scales
The various asymptotic scales of λ (displayed as (5.12), (5.15) and (5.20)) found

in the asymptotic sums over k and l in (5.22), can be given a simple geometric
interpretation based on the Newton diagram. From the result for the perpendicular
distance p from a point (x′, y′) to a given line Ax+By = C given by

p =
C −Ax′ −By′√

A2 +B2
, (C > 0),

we easily see that δi = pi/p0 (i = 1, 2), where

pi =
1−mi/µ− ni/ν√

1/µ2 + 1/ν2
, p0 =

1√
1/µ2 + 1/ν2

are the perpendicular distances of the vertex Pi = (mi, ni) and the origin, respective-
ly, to the back face presented in figure 8 as P0P3, with P0 ≡ (µ, 0) and P3 ≡ (0, ν).
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Figure 8. Triangular regions in the Newton diagram for the convex case with two internal
points.

If we write p0 = µν/d0, where d0 = P0P3, the length of the back face, then we find
the powers associated with two of these asymptotic scales given by

δ1ν

n1
=
p1d0

µn1
=

area4P0P3P1

area4OP0P1

and
δ2µ

m2
=
p2d0

m2ν
=

area4P0P3P2

area4OP2P3
.

To interpret the powers of the remaining scales, we note that the perpendicular
distance from P1 to the line segment P0P2 is p11, where

p11 =
n1 + n2m1/(µ−m2)− µn2/(µ−m2)√

1 + n2
2/(µ−m2)2

=
∆− µN

d1
,

with d1 = P0P2, the length of P0P2. Then
∆− µN
µn1

=
p11d1

µn1
=

area4P0P2P1

area4OP0P1
,

and, in a similar fashion,
∆− νM
m2ν

=
p22d2

m2ν
=

area4P3P1P2

area4OP2P3
,

where p22 denotes the perpendicular distance from P2 to the line segment P1P3 and
d2 = P1P3. Finally, since the area of triangle OP1P2 is 1

2∆, we have

∆− µN
∆

=
p11d1

∆
=

area4P0P1P2

area4OP1P2

and
∆− νM

∆
=

area4P3P1P2

area4OP1P2
.

Hence the powers associated with the different asymptotic scales of λ appearing in
the expansion (5.22) can be interpreted as ratios of triangular areas in the Newton
diagram.
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6. Asymptotics with three or more internal points

In view of the fact that internal points do not give rise to additional series con-
stituting the asymptotic expansion of I(λ), we shall restrict our attention in this
section to the purely convex case, i.e. the case where all internal points lie on the
Newton diagram, and no two faces are collinear. We will find from our analysis of
the case of three internal points a high degree of structure in the form of the result-
ing expansions. This in turn will enable us to record an algorithm for generating all
terms in the expansion of I(λ) for any number of internal points in the convex case.
As was the case in earlier sections, we will assume that all poles of integrands are
simple.

(a ) Three internal points in the convex case
Now let us suppose k = 3 in (3.1), and that the internal points Pi = (mi, ni),

i = 1, 2, 3, are labelled so that µ > m1 > m2 > m3 and n1 < n2 < n3 < ν. The
points P1, P2 and P3 then appear as shown in figure 9. We shall find it convenient
to define analogues of M , N and ∆ from the previous section, and supply a small
set of identities relating these quantities. For the quantities

Mij = mi −mj , Nij = nj − ni, ∆ij = minj − nimj , (6.1)

where i, j = 1, 2, 3, i < j, it is easily seen that

miδj −mjδi = Mij −∆ij/ν, njδi − niδj = Nij −∆ij/µ,

m3∆12 +m1∆23 = m2∆13, n3∆12 + n1∆23 = n2∆13

}
(6.2)

and
δ1∆23 − δ2∆12 + δ3∆12 = ∆12 −∆13 + ∆23.

With the ordering imposed on the points P1, P2 and P3, we have all the Mij , Nij

positive, and the quantities ∆ij can be seen to be the areas of parallelograms gener-
ated by pairs of position vectors Pi, Pj which form positively ordered bases for the
mn-plane. Accordingly, each ∆ij is positive.

The lines constituting the faces in the Newton diagram meet the coordinate axes
in a regular fashion, giving rise to a number of useful inequalities. The intersection
points on the m-axis, indicated in figure 9 by labels (1m), (2m), . . . , yields the chain
of inequalities

m3ν

ν − n3
<

∆23

N23
<

∆13

N13
<

∆12

N12
< µ,

while those intersection points on the n-axis, indicated in the figure by labels
(1n), (2n), . . . , give

µn1

µ−m1
<

∆12

M12
<

∆13

M13
<

∆23

M23
< ν. (6.3)

Under the simplifying assumption c1 = c2 = c3 = 1, (3.1) for k = 3 becomes

I(λ) =
λ−1/µ−1/ν

µν

(
1

2πi

∫ i∞

−i∞

)3

Γ (t1)Γ (t2)Γ (t3)Γ
(

1−m · t
µ

)
×Γ

(
1− n · t

ν

)
λ−δ·t dt1dt2dt3, (6.4)

where the vector representations in (3.3) are being used. If we begin our investigation

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


606 D. Kaminski and R. B. Paris

m

n

B
B
B
B
B
BB

J
J
JJ

J
J
J
J

Q
Q
Q
Q

Q
Q
QQ

PPPPPPP

@
@

@@

@@

@
@

B
B
B
B
B
B
BB
J
J
JJ
Q
Q
QPPPPPPPP

rr
r

r

r

P1

P2

P3

(1m) (2m) (3m)(4m) µ

(1n)

(2n)

(3n)
(4n)

ν

Figure 9. The Newton diagram for three internal points in the convex case. The values of the
labels (1m), (2m), . . . , are discussed in the text.

by displacing the t3 contour first, setting t3 = ρeiθ with |θ| < 1
2π, then we find that

the logarithm of the modulus of the integrand is dominated by

δ3ρ cos θ log ρ+O(ρ),

for large ρ. Since all the points Pi in the Newton diagram lie in front of the back
face, the quantity δ3 is positive, from which it follows the above estimate must tend
to +∞ as ρ→∞. The integration contour in turn must be displaced to the right to
develop asymptotic expansions.

Candidate poles arise in two sequences (assumed to share no points):

t
(1)
3 = (K −m1t1 −m2t2)/m3, k = 0, 1, 2, . . . , and

t
(2)
3 = (K ′ − n1t1 − n2t2)/n3, k = 0, 1, 2, . . . .

Poles from the t(1)
3 sequence give rise to the series of contributions (suppressing, as

before, the leading factor of λ−1/µ−1/ν)

I1 =
1

m3ν

∑
k

(−1)k

k!

(
1

2πi

∫ i∞

−i∞

)2

Γ (t1)Γ (t2)Γ (t(1)
3 )

×Γ

(
1− n1t1 − n2t2 − n3t

(1)
3

ν

)
λ−δ·t dt1dt2, (6.5)

with δ · t = δ1t1 + δ2t2 + δ3t
(1)
3 . Similarly, the t(2)

3 sequence of poles yields the series

I2 =
1
µn3

∑
k

(−1)k

k!

(
1

2πi

∫ i∞

−i∞

)2

Γ (t1)Γ (t2)Γ (t(2)
3 )

×Γ

(
1−m1t1 −m2t2 −m3t

(2)
3

µ

)
λ−δ·t dt1dt2, (6.6)

with δ · t = δ1t1 + δ2t2 + δ3t
(2)
3 .
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The integrals in the I1 series (6.5) have integrands reducing to

Γ (t1)Γ (t2)Γ
(
K −m1t1 −m2t2

m3

)
Γ
(
m3 − n3K + ∆13t1 + ∆23t2

m3ν

)
λ−δ·t,

from which it follows, upon setting t2 = ρeiθ with |θ| < 1
2π, the logarithm of the

modulus of the integrand behaves as

ρ cos θ log ρ(∆23 −M23ν)/m3ν +O(ρ),

for large ρ. From (6.3), we have ∆23 < M23ν whence it follows that the above estimate
tends to −∞ as ρ→∞. The next step in determining the asymptotics arising from
(6.5) involves displacing the t2 contour to the left. Because of the presence of an
additional Γ function in the integrand, there are now three sequences of poles that
must be considered: poles of Γ (t2), poles of Γ ((K − m1t1 − m2t2)/m3) and poles
of Γ ((m3 − n3K + ∆12t1 + ∆23t2)/m3ν). However, poles of the second Γ function
listed, of the form (K +m3l−m1t1)/m2, l a non-negative integer, fail to satisfy the
requirement that the real part be negative (recall that along the integration contour
in the t1 plane, Re t1 = 0, except for an indentation to the right near the origin where
Re t1 is positive, but arbitrarily small). As a result there are only two sequences of
poles that can contribute to the asymptotic series arising from (6.5):

t
(1)
2 = −l,
t
(2)
2 = − m3

∆23
L′ +

n3

∆23
K − ∆13

∆23
t1 6 0, (6.7)

where l is a non-negative integer, and the poles listed in (6.7) are subject to the
indicated restrictions. These sequences of poles give rise to the formal series (with
suppressed factor of λ−1/µ−1/ν)

I11 =
1

m3ν

∑
k,l

(−1)k+l

k!l!
1

2πi

∫ i∞

−i∞
Γ (t1)Γ (t(1)

3 (−l))

×Γ

(
1− n1t1 + n2l − n3t

(1)
3 (−l)

ν

)
λ−δ·t dt1, (6.8)

I12 =
1

∆23

∑
k,l

(−1)k+l

k!l!
1

2πi

∫ i∞

−i∞
Γ (t1)Γ (t(3)

2 )Γ (t(1)
3 (t(3)

2 ))λ−δ·t dt1, (6.9)

with integrands that reduce to

Γ (t1)Γ
(
K −m1t1 +m2l

m3

)
Γ
(
m3 − n3K −∆23l + ∆13t1

m3ν

)
λ−δ·t,

Γ (t1)Γ
(
n3K −m3L

′ −∆13t1
∆23

)
Γ
(−n2K +m2L

′ + ∆12t1
∆23

)
λ−δ·t,

and have logarithms of moduli of integrands with the large-ρ behaviour (setting, in
each case, t1 = ρeiθ, |θ| < 1

2π)

ρ cos θ log ρ(∆13 −M13ν)/m3ν +O(ρ),
ρ cos θ log ρ(∆23 −∆13 + ∆12)/∆23 +O(ρ),
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respectively. Use of the inequalities (6.3) allows us to determine straightaway that
the t1 contour in (6.8) must be displaced to the left. For the series (6.9), however,
we must determine the sign of the quantity ∆23 − ∆13 + ∆12 appearing in the last
order estimate.

The quantity ∆23 −∆13 + ∆12 is, in fact, a measure of relative convexity. To see
this, consider the line through P1 and P3,

m

M13
+

n

N13
− m1

M13
− n1

N13
= 0. (6.10)

If P2 lies below this line (i.e. on the same side of the line as the origin), then the
left-hand side of (6.10) must be negative, whereas if P2 lies above the line, the left-
hand side must be positive. (If P2 lies on (6.10), the Newton diagram has a pair of
collinear faces, a case we have excluded from discussion.) Consequently, the case of
three internal points in the convex case requires that

m2

M13
+

n2

N13
− m1

M13
− n1

N13
=
−∆13 + ∆23 + ∆12

M13N13
< 0,

from which we conclude that the t1 contour in (6.9) must be translated to the left
as is the case for (6.8).

For (6.8), we find there are two sequences of poles to consider,

t
(1)
1 = −r,
t
(2)
1 =

n3

∆13
K +

∆23

∆13
l − m3

∆13
(1 + νr) =

n3K + ∆23l −m3R
′

∆13
6 0, (6.11)

giving rise to the expansions (with the usual conventions)

I111 =
1

m3ν

∑
k,l,r

f111(k, l, r), I112 =
1

∆13

∑
k,l,r′

f112(k, l, r), (6.12)

where

f111(k, l, r) =
(−1)k+l+r

k!l!r!
Γ
(
K +m1r +m2l

m3

)
×Γ

(
m3 − n3K −∆13r −∆23l

m3ν

)
λ−δ·t, (6.13)

−δ · t = − δ3

m3
K +

∆23 −M23ν

m3ν
l +

∆13 −M13ν

m3ν
r,

and

f112(k, l, r) =
(−1)k+l+r

k!l!r!
Γ
(
n3K + ∆23l −m3R

′

∆13

)
×Γ

(−n1K + ∆12l +m1R
′

∆13

)
λ−δ·t, (6.14)

−δ · t =
∆13 − µN13

µ∆13
K +

∆13 −∆12 −∆23

∆13
l +

∆13 −M13ν

ν∆13
R′.

In these expressions, we have non-negative integer parameters k, l and r, and restric-
tions apply in those sums with primes on the summation indices. We have also set
R′ ≡ 1 + νr (see (2.2)).
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For (6.9), we find there are three sequences of poles to consider,

t
(1)
1 = −r,
t
(2)
1 =

n3

∆13
K − m3

∆13
L′ +

∆23

∆13
r 6 0, (6.15)

t
(3)
1 =

n2

∆12
K − m2

∆12
L′ − ∆23

∆12
r 6 0, (6.16)

giving rise to the expansions (with the usual conventions regarding primed summa-
tion indices)

I121 =
1

∆23

∑
k,l′,r

f121(k, l, r),

I122 = − 1
∆13

∑
k,l′,r′

f112(k, r, l), (6.17)

I123 =
1

∆12

∑
k,l′,r′

f123(k, l, r),

where

f121(k, l, r) =
(−1)k+l+r

k!l!r!
Γ
(
n3K −m3L

′ + ∆13r

∆23

)
×Γ

(−n2K +m2L
′ −∆12r

∆23

)
λ−δ·t, (6.18)

−δ · t =
∆23 − µN23

µ∆23
K +

∆23 − νM23

ν∆23
L′ +

∆12 −∆13 + ∆23

∆23
r,

and

f123(k, l, r) =
(−1)k+l+r

k!l!r!
Γ
(
n2K −m2L

′ −∆23r

∆12

)
×Γ

(−n1K +m1L
′ + ∆13r

∆12

)
λ−δ·t, (6.19)

−δ · t =
∆12 − µN12

µ∆12
K +

∆12 −M12ν

ν∆12
L′ +

∆12 −∆13 + ∆23

∆12
r.

If we repeat our analysis for (6.6), then we find that displacement of the t2 integrals
in I2 must occur to the right, and the poles encountered come in two series,

t
(1)
2 = (K ′ + n3l − n1t1)/n2 > 0, (6.20)

t
(2)
2 = − m3

∆23
K ′ +

n3

∆23
L− ∆13

∆23
t1 > 0. (6.21)

The t(1)
2 sequence (6.20) gives rise to a series of contributions, the integrals in which

must be displaced to the right. In doing so, two further sequences of poles,

t
(1)
1 = (K ′ + n2l + n3r)/n1,

t
(2)
1 =

−m2

∆12
K ′ − ∆23

∆12
l +

n2

∆12
(1 + µr) =

−m2K
′ −∆23l + n2R

∆12
> 0, (6.22)
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give rise to the asymptotic series

I211 =
1
µn1

∑
k,l,r

f211(k, l, r), I212 =
1

∆12

∑
k,l,r′

f123(r, k, l),

where

f211(k, l, r) =
(−1)k+l+r

k!l!r!
Γ
(
K ′ + n3l + n2r

n1

)
×Γ

(
n1 −m1K

′ −∆13l −∆12r

µn1

)
λ−δ·t, (6.23)

−δ · t = − δ1

n1
K ′ +

∆13 − µN13

µn1
l +

∆12 − µN12

µn1
r,

and where f123 is given in (6.19). Here, we have set R = 1 + µr (recall (2.2)).
The t(2)

2 sequence (6.21) similarly gives rise to a series of contributions, the integrals
in which must be displaced to the left. Poles that are encountered in the displacement
give rise to three sequences:

t
(1)
1 = −r,
t
(2)
1 =

−m3

∆13
K ′ +

n3

∆13
L+

∆23

∆13
r 6 0, (6.24)

t
(3)
1 =

−m2

∆12
K ′ +

n2

∆12
L− ∆23

∆12
r 6 0. (6.25)

These, in turn, give rise to the asymptotic series

I221 =
1

∆23

∑
k,l′,r′

f121(l, k, r),

I222 = − 1
∆13

∑
k,l′,r′

f112(l, r, k), (6.26)

I223 =
1

∆12

∑
k,l′,r′

f123(l, r, k),

where f121, f112 and f123 are given, respectively, in (6.18), (6.14) and (6.19).
The triply-subscripted asymptotic series that we have obtained can be collected

together in a more attractive form. In table 1, we gather together the restrictions
attached to each of the formal asymptotic sums I111, I112, . . . , I223; for ease of discus-
sion, we have also displayed the denominator that appears in the factor before the
Σ in each of the definitions of these sums.

The origins of the three-term inequalities present in the table arise from the restric-
tions in place on the final sequences of poles resulting from displacement, in order,
of t3, t2 and t1 contours and recorded in (6.11), (6.15), (6.16), (6.22), (6.24) and
(6.25). The two-term inequalities arise at intermediate stages (after the second dis-
placement, of t2) from (6.7) and (6.21); the t1 dependence there does not appear in
the table since the inequality must still hold prior to the (final) displacement of the
t1 contour, when Re t1 = 0 everywhere except near the origin in the t1-plane where
it is positive but arbitrarily small. We also mention that series in the table shar-
ing a common denominator for the leading factor (modulo a minus sign) also share
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Table 1. Linear restrictions imposed on the asymptotic series
(The quantities K,K ′, L, L′, R and R′ are defined in (2.2).)

asymptotic series denominator inequalities

I111 m3ν none

I112 ∆13 (n3K + ∆23l −m3R
′)/∆13 6 0

I121 ∆23 (n3K −m3L
′)/∆23 6 0

I122 −∆13 (n3K −m3L
′)/∆23 6 0

(n3K −m3L
′ + ∆23r)/∆13 6 0

I123 ∆12 (n3K −m3L
′)/∆23 6 0

(n2K −m2L
′ −∆23r)/∆12 6 0

I211 µn1 none

I212 ∆12 (−m2K
′ −∆23l + n2R)/∆12 > 0

I221 ∆23 (−m3K
′ + n3L)/∆23 > 0

I222 −∆13 (−m3K
′ + n3L)/∆23 > 0

(−m3K
′ + n3L+ ∆23r)/∆13 6 0

I223 ∆12 (−m3K
′ + n3L)/∆23 > 0

(−m2K
′ + n2L−∆23r)/∆12 6 0

a common summand, albeit with different inequalities applying to the summand’s
arguments. It is this last feature that permits substantial simplification, which we
illustrate in detail only for one case.

Let us examine the series with denominator ±∆13. This corresponds to the entries
for I112, I122 and I222. To effect a comparison, let us make the changes of summation
indices r → l, l → r in I122 and r → l, l → k, k → r in I222, so that all summands
to the series appear as f112(k, l, r) (recall (6.12), (6.17), (6.26) and (6.14)). These
changes of variables also effect changes to the inequalities governing I122 and I222,
rendering those for I122 as

n3

∆23
K − m3

∆23
R′ 6 0,

n3

∆13
K +

∆23

∆13
l − m3

∆13
R′ 6 0,

and those for I222 as

n3

∆23
K − m3

∆23
R′ > 0,

n3

∆13
K +

∆23

∆13
l − m3

∆13
R′ 6 0.

The second of each of these pairs of inequalities are identical, and the first of each of
these pairs are complementary. As a result, we can combine the series I122 and I222
into a single sum, which we continue to denote by I122, subject to the single linear
inequality

n3

∆13
K +

∆23

∆13
l − m3

∆13
R′ 6 0.

This inequality, however, is precisely that governing I112, and since I112 and our
‘fused’ I122 are negatives, we see that all the series in table 1 associated with the
factor ∆13 annihilate.

In similar fashion, we can deduce that the I123, I212 and I223 series sum into a
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single series, which we continue to denote by I123, subject to no linear contraints,
and that the I121 and I221 series unite in another series, still denoted by I121, also
free of linear constraint (except, of course, that all indices be non-negative integers).

After restoring the factor λ−1/µ−1/ν , we arrive at the large-λ asymptotic expansion
of (6.4)

I(λ) ∼ λ−1/µ−1/ν(I111 + I121 + I123 + I211),
where the sums have no linear constraint, or more explicitly,

I(λ) ∼ λ−1/µ−1/ν
{

1
m3ν

∑
k,l,r

f111(k, l, r) +
1

∆23

∑
k,l,r

f121(k, l, r)

+
1

∆12

∑
k,l,r

f123(k, l, r) +
1
µn1

∑
k,l,r

f211(k, l, r)
}
, (6.27)

as λ → ∞. The summands in (6.27) are given in (6.13), (6.18), (6.19) and (6.23),
and the indices range over non-negative integers k, l and r. The principle of one
asymptotic series per face of the Newton diagram continues to hold, with the first
series corresponding to the face joining (0, ν) to P3, the next corresponding to the
face joining P3 to P2 and so on.

(b ) The convex case for many internal points
A careful examination of the process used to arrive at expansions (5.22) and (6.27)

shows that the result of our careful sequence of displacing integration contours is
equivalent to setting various integration variables in (3.5) to the values of poles of
some Γ functions appearing in the integrand of (3.5) and evaluating the remaining
Γ functions in the integrand at these values. For convex cases, a high degree of
regularity in this process is apparent, as we explain.

Let us set k = N − 1 in (3.1) and (3.5), as k will assume a different use shortly.
Define the following simple determinants, paralleling the determinants used earlier
in (5.2) and (6.1):

∆i,i+1 =

∣∣∣∣∣ mi ni

mi+1 ni+1

∣∣∣∣∣ ,
where 0 6 i 6 N−1, and where we set P0 = (m0, n0) = (µ, 0) and PN = (mN , nN ) =
(0, ν). The internal points P1 = (m1, n1), . . . , PN−1 = (mN−1, nN−1) are ordered so
that m1 > m2 > · · · > mN−1 and n1 < n2 < · · · < nN−1. The ∆i,i+1 are the factors
that appear in the denominators associated with series, as in (5.22) and (6.27). In
order, ∆01 is associated with the face of the Newton diagram which connects P0
with P1, ∆12 is associated with the face joining P1 to P2, and so on. The asymptotic
expansion of (3.1) will be of the form λ−1/µ−1/ν times a finite sum of series of the
type given below, one series for each face in the Newton diagram.

The series associated with the face formed from Pi and Pi+1, 0 6 i 6 N − 1, has
the structure

1
∆i,i+1

∑ (−1)k+l+r1+···

k!l!r1! · · · Γ (·)Γ (·)c−t11 · · · c−tN−1
N−1 λ−δ1t1−···−δN−1tN−1 , (6.28)

with only two Γ function evaluations present in the summand. The arguments of
the Γ functions are easily determined as solutions of a particular linear system,
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constructed from the system

m1t1+m2t2+· · ·+miti+mi+1ti+1+· · ·+mN−1tN−1 = 1 + µk

n1t1 +n2t2 +· · ·+niti+ni+1ti+1 +· · ·+nN−1tN−1 = 1 + νl

t1 =−r1

t2 =−r2

. . . · · ·
tN−1 =−rN−1

where k, l, r1, . . . , rN−1 are the non-negative integer parameters appearing as sum-
mation indices in the formal asymptotic sum (6.28).

For faces of the Newton diagram which do not touch the coordinate axes, namely
when 0 < i < N − 1, the correct linear system to use to determine the arguments
of the Γ functions in (6.28) is formed by deleting the rows corresponding to the
equations ti = −ri and ti+1 = −ri+1. The resulting system has only ti and ti+1 as
unknowns and has ∆i,i+1 as the determinant of the coefficient matrix

A =


m1 m2 · · · mi−1

n1 n2 · · · ni−1

mi mi+1

ni ni+1

mi+2 mi+3 · · · mN−1

ni+2 ni+3 · · · nN−1

I O O
O O I

 ,
where the blocks labelled I and O indicate identity and zero matrices. From Cramer’s
rule, ti and ti+1 are given by

ti =
detAcol(i)←KT

∆i,i+1
, ti+1 =

detAcol(i+1)←KT

∆i,i+1
,

where Acol(i)←KT denotes the matrix A with ith column replaced by the trans-
pose of K = (1 + µk, 1 + νl,−r1, . . . ,−ri−1,−ri+2, . . . ,−rN−1). The values ti and
ti+1 so determined are the arguments for the Γ functions in (6.28) and together with
t1 = −r1, t2 = −r2, . . . , ti−1 = −ri−1, ti+2 = −ri+2, . . . , tN−1 = −rN−1, are the values
to be used in computing the remaining factors c−t11 · · · c−tN−1

N−1 and λ−δ1t1−···−δN−1tN−1

in the summand of (6.28). The integer parameters k, l, r1, . . . , ri−1, ri+2, . . . , rN−1 are
the values used in the computation of the power of (−1) in the numerator and the
product of factorials in the denominator of (6.28).

The series associated with the ∆01 and ∆N−1,N faces require only a small modifi-
cation of this process. For the case of the ∆N−1,N series, we excise from our linear
system the linear equations

∑
niti = 1 + νl and tN−1 = −rN−1 (instead of ti = −ri

and ti+1 = −ri+1 for 0 < i < N − 1). The solutions of this resulting system offer up
t-values for use in the c−t11 · · · c−tN−1

N−1 and λ−δ1t1−···−δN−1tN−1 factors in the summand
of (6.28). The arguments of the Γ functions in (6.28) are the computed tN−1 and
(1−∑niti)/ν.

For the ∆01 series, the appropriate pair of linear equations to remove is t1 = −r1
and

∑
miti = 1 + µk. The Γ functions in (6.28) are evaluated at the computed t1

and (1−∑miti)/µ.
Leading terms for the series associated with each face of the Newton diagram are

easily obtained. For the face joining P0 to P1, the leading term is

1
µn1

Γ
(

1
n1

)
Γ
(
n1 −m1

µn1

)
c
−1/n1
1 λ−δ1/n1 ,
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where use has been made of ∆01 = µn1. For a face not touching the coordinate axes,
PiPi+1 with 0 < i < N − 1, the leading term is

1
∆′

Γ
(
ni+1 −mi+1

∆′

)
Γ
(
mi − ni

∆′

)
×c(mi+1−ni+1)/∆′

i c
(ni−mi)/∆′

i+1 λ−(νMi,i+1−∆′)/ν∆′−(µNi,i+1−∆′)/µ∆′ ,

where we have used the identities (6.1) and (6.2), extended for the case of several
internal points, and written ∆′ for ∆i,i+1. Finally, the face joining PN−1 to PN has
the leading term

1
mN−1ν

Γ
(

1
mN−1

)
Γ
(
mN−1 − nN−1

mN−1ν

)
c
−1/mN−1
N−1 λ−δN−1/mN−1 ,

where use has been made of ∆N−1,N = mN−1ν.
With these leading terms, it is a simple matter to conduct an analysis of the

relationship between remoteness of the Newton diagram and the order of the leading
term in the asymptotic expansion of I(λ) in this case. If we denote by m∗i the abscissa
of the point of intersection of the line through the ith face (formed by Pi−1 and Pi)
with the diagonal m = n, then it is routine to show that the quantities m∗i increase
until the face meeting the diagonal is met, and then decrease again. If this face is
internal (i.e. one that does not meet the coordinate axes), then Pi−1 and Pi lie on
opposite sides of the diagonal, in which case ni − mi and mi−1 − ni−1 are both
positive and the leading term corresponding to this i then has Γ functions with
positive arguments. For that i, it is then a straightforward matter to show that the
remoteness −1/m∗i equals

− 1
µ
− 1
ν
− νMi−1,i −∆i−1,i

ν∆i−1,i
− µNi−1,i −∆i−1,i

µ∆i−1,i
.

A similar argument can be advanced for the two remaining cases (when the diagonal
does not meet an internal face). The details for these arguments are left to the reader.

7. Numerical examples

In this section we present numerical examples to illustrate the accuracy of the
various expansions of I(λ) developed in §§ 3–6. These expansions were developed on
the assumption that all the poles in the corresponding Mellin–Barnes integrals were
simple. Here we present cases where this condition is satisfied but also show how to
deal with situations where double poles are present which give rise to logarithmic
terms.

Example 7.1. We consider the integral with a single internal point given by

I(λ) =
∫ ∞

0

∫ ∞
0

exp[−λ(xµ + xm1yn1 + yν)] dxdy, (7.1)

where we assume that δ1 = 1 − m1/µ − n1/ν > 0, i.e. the vertex P1 = (m1, n1)
lies in front of the back face of the Newton diagram joining the points (µ, 0) and
(0, ν). Without loss of generality we have put the constant c1 multiplying the term
xm1yn1 equal to unity, since a simple scaling of the variables x, y and the parameter
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λ enables the general case to be expressed in the above form. From (4.1) this has the
Mellin representation

I(λ) =
λ−1/µ−1/ν

µν

1
2πi

∫ i∞

−i∞
Γ (t)Γ

(
1−m1t

µ

)
Γ
(

1− n1t

ν

)
λ−δ1t dt, (7.2)

valid in the sector | arg λ| < 1
2π(1 +m1/µ+ n1/ν)/δ1 (see (3.7)).

When all the poles of the integrand in (7.2) are simple, the asymptotic expansion
of I(λ), given by (4.7), consists of two series with the asymptotic scales λ−δ1µ/m1

and λ−δ1ν/n1 . For example, in the case µ = ν = 3 and m1 = 3
2 , n1 = 1, we obtain

the expansion

I(λ) ∼ 2
9λ
−7/9

∞∑
k=0

(−1)k

k!
Γ ( 2

3 + 2k)Γ ( 1
9 − 2

3k)λ−k/3

+ 1
3λ
−5/6

∞∑
k=0

(−1)k

k!
Γ (1 + 3k)Γ (− 1

6 − 3
2k)λ−k/2,

associated with the scales λ−1/3 and λ−1/2, respectively. In table 2 we present the
results of numerical calculations for different values of the parameters µ, ν,m1 and n1.
The second column shows the value of I(λ) calculated either from (7.1) by standard
numerical quadrature or from its equivalent representation as a generalized hyperge-
ometric function given by the right-hand side of (4.8). The third column shows the
asymptotic value of I(λ) obtained by optimal truncation of each asymptotic series,
that is, truncation just before the numerically smallest term.

An example of an integral of type (7.1) involving double poles is given by µ = ν = 5
and m1 = n1 = 2 for which the expansion (4.7) becomes nugatory. In this case the
integrand in (7.2) possesses a sequence of double poles at t = 1

2 + 5
2k, k = 0, 1, 2, . . . .

The residues at these poles are given by the coefficient of x−1 in the Maclaurin
expansion of

Γ ( 1
2 + 5

2k + x)Γ 2(−k − 2
5x)λ−k/2−1/10−x/5

=
λ−k/2−1/10Γ ( 1

2 + 5
2k)

(2x/5)2(k!)2

[1 + ψ( 1
2 + 5

2k)x+ · · ·][1− 1
5x log λ+ · · ·]

[1 + 2
5ψ(1 + k)x+ · · ·]2

=
25
4
λ−k/2−1/10 Γ ( 1

2 + 5
2k)

x2(k!)2 {1 + x[ψ( 1
2 + 5

2k)− 1
5 log λ− 4

5ψ(1 + k)] + · · ·},

where ψ denotes the logarithmic derivative of the Γ function. The asymptotic expan-
sion of I(λ) in this case therefore consists of the single expansion

I(λ) ∼ 1
20
λ−1/2

∞∑
k=0

Γ ( 1
2 + 5

2k)
(k!)2 {log λ+ 4ψ(1 + k)− 5ψ( 1

2 + 5
2k)}λ−k/2,

as λ→∞.
It can be observed in the examples chosen that there is a considerable variation

in the asymptotic scales according to the proximity of the vertex P1 to the back
face (see §5 f). This results in a rather wide range of λ-values necessary to achieve
an adequate description of the behaviour of I(λ) by the corresponding asymptotic
formula. In the symmetrical case with µ = ν and m1 = n1, all the poles in the
integrand in (7.2) are double and each term in the expansion involves a term in

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


616 D. Kaminski and R. B. Paris

Table 2. Comparison of the asymptotic values of I(λ) with one internal point

µ = ν = 3, m1 = 3
2 , n1 = 1, δ1 = 1

6
λ I(λ) asymptotic value

1.0×102 0.02643 82192 0.01952 49523
1.0×103 0.00511 42751 0.00507 50847
5.0×103 0.00160 24135 0.00160 24277
1.0×104 0.00096 91553 0.00096 91550
5.0×104 0.00029 95087 0.00029 95086

µ = ν = 4, m1 = 1
2 , n1 = 4

5 , δ1 = 27
40

λ I(λ) asymptotic value

1.0×101 0.07981 13640 0.05396 33427
2.0×101 0.03703 09129 0.03707 77826
5.0×101 0.01235 59580 0.01235 59563
8.0×101 0.00686 99475 0.00686 99466
1.0×102 0.00517 85557 0.00517 85557

µ = ν = 5, m1 = n1 = 2, δ1 = 1
5

λ I(λ) asymptotic value

1.0×102 0.11047 54348 0.10919 62332
5.0×102 0.05523 15228 0.05520 87617
1.0×103 0.04087 48889 0.04087 42206
1.0×104 0.01488 32370 0.01488 32334
5.0×104 0.00728 03604 0.00728 03598

log λ. If we relax the degree of symmetry of the Newton diagram by taking µ 6= ν
(but with m1, n1 still situated on the 45◦ line), it is then easily seen (when µ/ν
is rational) that both single and double poles can arise, with the first pole of the
sequence always being double. This means that, although the leading term again
contains log λ, the other logarithmic contributions now appear as higher order terms
distributed amongst the algebraic terms in the expansion. When there is no longer
any symmetry in the Newton diagram (i.e. when µ 6= ν and m1 6= n1), the poles
can either be all simple (as in the first two examples in table 2) or there can be
double poles embedded within the sequence of single poles. In either case, however,
the leading term of the expansion in the unsymmetric case is always algebraic.

Finally, as mentioned in §3, the expansion (4.7) (and the corresponding expansion
involving log λ in the case of double poles) is valid for complex λ in a sector enclosing
the rays arg λ = ± 1

2π. To illustrate this fact we show in table 3 the values of I(λ)
when µ = ν = 5 and m1 = 1, n1 = 1

2 computed from the right-hand side of (4.8) for
varying phase of λ with fixed |λ|. In this case the sector of validity of the integral (7.2),
and hence that of the expansion (4.7) (in the sense of Poincaré), is | arg λ| < 13

14π.
We remark that arg λ = ± 1

2π corresponds to a Fourier integral with a single critical
point at the origin.
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Table 3. Comparison of the asymptotic values of I(λ) with a single internal point for complex λ

µ = ν = 5, m1 = 1, n1 = 1
2 , δ1 = 7

10 , λ = 50eiθ

θ/π I(λ) asymptotic value

0.0 0.01578 04781 + 0.00000 00000i 0.01578 04780 + 0.00000 00000i
0.1 0.01481 90028− 0.00553 01069i 0.01481 90025− 0.00553 01067i
0.2 0.01202 10294− 0.01044 67200i 0.01202 10301− 0.01446 72144i
0.3 0.00764 78949− 0.01417 01485i 0.00764 78957− 0.01417 01492i
0.4 0.00213 95833− 0.01619 66016i 0.00213 95841− 0.01619 65996i
0.5 −0.00388 77161− 0.01615 67121i −0.00388 77151− 0.01615 67144i

Example 7.2. As an example of an integral with two internal points, we consider

I(λ) =
∫ ∞

0

∫ ∞
0

exp[−λ(xµ + c1x
m1yn1 + c2x

m2yn2 + yν)] dxdy,

where the parameters will be chosen to correspond to a convex Newton diagram.
From (5.1), I(λ) has the Mellin representation

λ−1/µ−1/ν

µν

(
1

2πi

∫ i∞

−i∞

)2

Γ (t1)Γ (t2)Γ
(

1−m1t1 −m2t2
µ

)
Γ
(

1− n1t1 − n2t2
ν

)
× c−t11 c−t22 λ−δ1t1−δ2t2 dt1dt2, (7.3)

defined in the sector (see (3.7))

| arg λ| < min
i=1,2
{ 1

2π(1 +mi/µ+ ni/ν)/δi},

when c1, c2 are assumed to be positive real.
When all the poles of the integrand in (7.3) are simple, the asymptotic expansion

of I(λ) consists of three series given by (5.22) in the case c1 = c2 = 1. An illustration
of such a situation is µ = 5, ν = 4 with (m1, n1) = (5

2 , 1) and (m2, n2) = (1, 2). In
this case we have δ1 = 1

4 , δ2 = 3
10 , ∆ = 4 and ∆− µN = −1, ∆− νM = −2 so that,

from (5.3), the associated Newton diagram is convex. The expansion of I(λ) then
takes the form

I(λ) ∼ λ−9/20
{

1
4

∑
k,l

f11(k, l) + 1
4

∑
k,l

f12(k, l) + 1
5

∑
k,l

f21(k, l)
}
, (7.4)

as λ→∞, where k, l = 0, 1, 2, . . . , and, from (5.11), (5.12), (5.14), (5.15), (5.19) and
(5.20),

f11(k, l) =
(−1)k+l

k!l!
Γ (1 + 5k + 5

2 l)Γ (− 1
4 − 5

2k − l)λ−3/10−3k/2−l/2,

f12(k, l) =
(−1)k+l

k!l!
Γ ( 1

4 + 5
2k − l)Γ ( 3

8 − 5
4k + 5

2 l)λ
−7/40−k/4−l/2,

f21(k, l) =
(−1)k+l

k!l!
Γ (1 + 4k + 2l)Γ (− 3

10 − 2k − 4
5 l)λ

−1/4−k−l/5.

When c1, c2 6= 1, additional terms involving powers of c1 and c2 appear in each of
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Table 4. Comparison of the asymptotic values of I(λ) with two internal points

µ = 5, ν = 4, (m1, n1) = (2.5, 1), (m2, n2) = (1, 2), c1 = c2 = 1
λ I(λ) asymptotic value

1.0× 103 0.01649 86855 0.01530 34083
5.0× 103 0.00660 18949 0.00662 55882
1.0× 104 0.00442 75336 0.00442 22631
1.0× 105 0.00115 31511 0.00115 33535
5.0× 105 0.00044 41628 0.00044 40313
1.0× 106 0.00029 36705 0.00029 36729

µ = 5, ν = 4, (m1, n1) = (2.5, 1), (m2, n2) = (1, 2), c1 = 2, c2 = 3
λ I(λ) asymptotic value

1.0× 103 0.01078 82133 0.01228 82165
5.0× 103 0.00418 68491 0.00421 90510
1.0× 104 0.00277 62231 0.00278 25077
1.0× 105 0.00070 10746 0.00070 10886
5.0× 105 0.00026 56345 0.00026 56349
1.0× 106 0.00017 45786 0.00017 45787

µ = ν = 4, (m1, n1) = (2, 1), (m2, n2) = (1, 2), c1 = c2 = 1
λ I(λ) asymptotic value

1.0× 103 0.01185 73873 0.01173 42624
5.0× 103 0.00447 05490 0.00447 33081
1.0× 104 0.00292 42695 0.00292 60266
1.0× 105 0.00070 23219 0.00070 23687
5.0× 105 0.00025 58167 0.00025 58160
1.0× 106 0.00016 51223 0.00016 51222

the expansions in (7.4). From §5, the summands in (7.4) are then replaced by

f11(k, l)cl1c
−(1+5k+5l/2)
2 ,

f12(k, l)c−(1/4+5k/2−l)
1 c

−(3/8+5k/4−5l/2)
2 ,

f21(k, l)c−(1+4k+2l)
1 cl2,

respectively. In table 4 we present the results of numerical calculations of I(λ) when
c1 = c2 = 1 and c1 = 2, c2 = 3.

The second case we examine has µ = ν = 4, c1 = c2 = 1 with (m1, n1) = (2, 1)
and (m2, n2) = (1, 2), so that the internal points are again in front of the back face
but now straddle the 45◦ line in a symmetrical manner. Not unexpectedly, it will
be found that the high degree of symmetry in the Newton diagram in this case will
involve double poles which generate terms in log λ. We follow the procedure outlined
in §5 where the t2 contour in (7.3) is displaced to the right to yield the result

I(λ) = λ−1/2(I1 + I2), (7.5)
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where, from (5.6) and (5.7),

I1 = 1
4

∑
k

(−1)k

k!
λ−k−1/4 1

2πi

∫ i∞

−i∞
Γ (t1)Γ (1 + 4k − 2t1)Γ (− 1

4 − 2k + 3
4 t1)λt1/4 dt1,

I2 = 1
8

∑
k

(−1)k

k!
λ−k/2−1/8 1

2πi

∫ i∞

−i∞
Γ (t1)Γ ( 1

2 + 2k − 1
2 t1)Γ ( 1

8 − 1
2k − 3

8 t1)λ−t1/8 dt1.

As shown at (5.8), the t1 contour in each integral in I1 must be displaced
to the left. We thus encounter two sequences of poles at t(1)

1 = 0,−1,−2, . . . and
t
(2)
1 = 1

3 + 8
3k − 4

3 l, l = 0, 1, 2, . . . , where the latter sequence is subject to the con-
straint 4l > 8k + 1 to ensure that t(2)

1 6 0. When l = 1 + 2k + 3n, n = 0, 1, 2, . . . ,
the corresponding poles in the t(2)

1 sequence coincide with poles of the t(1)
1 sequence

to form double poles at t = −1− 4n with residue

4
3(−1)n

Γ (3 + 4k + 8n)
Γ (2 + 4n)Γ (2 + 2k + 3n)

λ−k−n−1/2

×{ 1
4 log λ− 2ψ(3 + 4k + 8n) + ψ(2 + 4n) + 3

4ψ(2 + 2k + 3n)}. (7.6)

Evaluation of the contribution from the simple poles is as described in §5 and we
consequently find that for large λ

I1 ∼ 1
4λ
−1/4

∞∑
k=0

∞∑
l=0

l 6=1+4n

f11(k, l) + 1
3λ
−1/6

∞∑
k=0

∞∑
l=0

l 6=1+2k+3n
4l>8k+1

f12(k, l) + 1
3λ
−1/2

∞∑
k=0

∞∑
l=0

g(k, l),

where n is a non-negative integer and, from (5.11), (5.12), (5.14) and (5.15),

f11(k, l) =
(−1)k+l

k!l!
Γ (1 + 4k + 2l)Γ (− 1

4 − 2k − 3
4 l)λ

−k−l/4,

f12(k, l) =
(−1)k+l

k!l!
Γ ( 1

3 + 8
3k − 4

3 l)Γ ( 1
3 − 4

3k + 8
3 l)λ

−k/3−l/3

and

g(k, l) =
(−1)k+l

k!
Γ (3 + 4k + 8l)

Γ (2 + 4l)Γ (2 + 2k + 3l)
λ−k−l

×{ 1
4 log λ− 2ψ(3 + 4k + 8l) + ψ(2 + 4l) + 3

4ψ(2 + 2k + 3l)}.
Proceeding in a similar fashion for I2 upon displacement of the t1 contour to

the right, we encounter two sequences of poles at t(1)
1 = 1 + 4k + 2l and t

(2)
1 = 1

3−4
3k + 8

3 l, l = 0, 1, 2, . . . , where the latter sequence is subject to the constraint
4k < 8l + 1 to ensure that t

(2)
1 > 0. Double poles arise at t = 3 + 4k + 8n, n =

0, 1, 2, . . . , corresponding to the values of l in t
(2)
1 given by l = 1 + 2k + 3n, with

residues equal to a factor of −2 times the value in (7.6). Hence, as λ→∞, we find

I2 ∼ 1
4λ
−1/4

∞∑
k=0

∞∑
l=0

l 6=1+4n

f11(k, l) + 1
3λ
−1/6

∞∑
k=0

∞∑
l=0

l 6=1+2k+3n
4k<8l+1

f12(l, k) + 1
3λ
−1/2

∞∑
k=0

∞∑
l=0

g(k, l).

Collecting together I1 and I2 according to (7.5), we find that the series involving
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λ−1/4 and λ−1/2 are equal while those involving λ−1/6 yield

1
3λ
−1/6

{ ∞∑
k=0

∞∑
l=0

l 6=1+2k+3n
4l>8k+1

f12(k, l) +
∞∑
k=0

∞∑
l=0

l 6=1+2k+3n
4k<8l+1

f12(l, k)
}
.

If we relabel the summation indices by putting k → l and l → k in the second
expansion, we see that the constraint 4l > 8k+1 on the first expansion is exactly the
complement of the constraint 4l < 8k+1 on the second expansion. Consequently, the
two expansions can be expressed as a single expansion subject only to the constraints
k 6= 1 + 2l + 3n and l 6= 1 + 2k + 3n.

Hence, we finally obtain the expansion of I(λ) in the form (for n = 0, 1, 2, . . .)

I(λ) ∼ 1
2λ
−3/4

∞∑
k=0

∞∑
l=0

l 6=1+4n

f11(k, l) + 1
3λ
−2/3

∞∑
k=0

∞∑
l=0

k 6=1+2l+3n
l 6=1+2k+3n

f12(k, l) + 2
3λ
−1

∞∑
k=0

∞∑
l=0

g(k, l),

(7.7)
as λ → ∞. We note that the restrictions appearing on the first two expansions
in (7.7) simply correspond to the deletion from these sums of the singular terms
resulting from the double poles. The numerical values of I(λ) in this case are shown
in table 4 and are compared with the asymptotic values computed from (7.7).

8. Summary

The analysis provided in this paper illustrates a number of principles, foremost
of which is that the method of representation of Laplace-type integrals as iterat-
ed Mellin–Barnes integrals, followed by conventional residue computations, is easily
applied, produces complete asymptotic expansions and can be readily carried out
without regard to the geometry of the associated Newton diagram. This method is
also applicable to a class of Fourier integrals, as illustrated in §7. This is a conse-
quence of the wide range of values of | arg λ| (described in §3), of at least 1

2π for
positive real constants c1, . . . , ck (recall (3.1)), for which the expansions are valid in
the Poincaré sense.

The dimensionality of the iterated Mellin–Barnes integral representation (3.5) of
I(λ) is governed by the number of terms in the phase to which (3.4) is applied,
and not by the dimensionality of the original Laplace integral representation (3.1).
Accordingly, even one-dimensional Laplace-type integrals can lead to high dimension
iterated Mellin–Barnes integrals. An investigation of one-dimensional integrals, for
which the geometry of the Newton diagram of the phase is trivial, is undertaken in
Kaminski & Paris (1997). There the reader will find an account of the asymptotic
nature of the expansions arising from the method of representation as Mellin–Barnes
integrals, a concern not presented in this paper for reasons of length.

The retention of geometric information present in the Newton diagram, however,
is a great deal more insightful. It can be seen that the asymptotic expansion of I(λ)
(recall (3.1)) is a compound expansion in which each constituent asymptotic series
is associated with a single face of the Newton diagram of the phase function. Terms
of the phase function not corresponding to vertices of the Newton diagram do not
generate asymptotic series, and their presence appears in the expansion of I(λ) only
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in the arguments of the Γ functions found in expansions associated with faces of
the Newton diagram. Furthermore, these terms (in the language of §5, such terms
correspond to points behind the Newton diagram) play no role in the leading terms
of the series comprising the asymptotic expansion of I(λ). This makes the study of
the relationship between ‘remoteness’ of the Newton diagram and the order of the
leading term of the expansion of I(λ) particularly simple to undertake, as points
behind the Newton diagram can safely be ignored.

The correspondence between individual series in the compound expansion of I(λ)
and the faces of the Newton diagram only fails in cases of extreme symmetry with
respect to the line m = n in the plane of the diagram. In such cases, illustrated
in §7, the compound expansion degenerates into one with fewer component series,
some of which have a high frequency of logarithmic terms. Additionally, for less
symmetric Newton diagrams where the correspondence does not break down, it is
apparent that greater symmetry manifests itself in the expansions by yielding more
logarithmic terms in the constituent series.

The geometric interpretation of the various quantities constituting the asymptotic
scales for the expansions developed in this paper, detailed for the case of two internal
points in the convex case in §5 f , can be readily extended to cases with more internal
points. Such a geometric approach can even be extended to deal with treble Laplace-
type integrals, with little modification provided one examines volumes of tetrahedra
instead of areas of triangles, as was undertaken in §5 f .

The numerical investigations of §7 reveal a number of interesting issues involving
the practical application of the expansions obtained in the paper. One is that of the
role played by the quantities δi (cf. (3.2)). While possessing a simple geometric inter-
pretation, the quantities δi serve to highlight the worsening utility of the asymptotic
expansions presented in this paper for small values of δi. In such small-δi cases, other
approximation techniques may prove more efficacious when the large parameter λ is
of modest magnitude.

Another concern raised by the investigations of §7 arises frequently in cases when
the parameters µ, ν, mi and ni result in arguments of the Γ functions in the com-
pound expansions (e.g. the quantities fij to be found in (5.11), (5.19) and elsewhere)
approaching poles of those Γ functions. In such cases, the quality of the numerical
approximations furnished by the asymptotic approximations deteriorates, although
the effect of ‘near misses’ of poles of Γ functions might manifest itself only in com-
paratively late terms of the asymptotic expansions.

We note that this study of double Laplace-type integrals also provides a rich setting
in which to investigate a host of uniformity problems. Two easily-framed examples of
uniformity problems would be: (i) to analyse the transition in the expansions when
a vertex of the Newton diagram is displaced away from the origin into the region
behind the diagram; and (ii) to analyse the changes in the expansions as a constant,
ci (recall (3.1)), tends to zero. In situation (i), a smooth deformation of the phase
function is taking place, but at some point of the deformation process the Newton
diagram will have two adjacent faces fuse into a single face with a corresponding
reduction in the number of series in the compound asymptotic expansion of I(λ). In
case (ii), likely to be of greater practical concern, the compound expansion has the
same number of series for all ci > 0, but abruptly loses a series when ci vanishes.

Finally, we close by making a few remarks on the extension of the results in this
paper to the more general integral (1.1) when n = 2, with analytic phase f (restricted
so as to have no saddle points in the domain of integration) and amplitude g. If we
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write f(x, y) = f0(x, y) + f1(x, y), where f0 comprises those terms in the Maclaurin
expansion of f that correspond to vertices of the Newton diagram of f , then we can
expand the resulting factor, exp[−λf1(x, y)]g(x, y), appearing in the integrand into
its Maclaurin series

∑
r,s(−λ)ν(r,s)pr,s(λ)xrys, where r, s and ν(r, s) are non-negative

integers and pr,s(λ) is a polynomial in inverse powers of λ. This then leads to the
formal series expansion

I(λ) =
∑
r,s

(−λ)ν(r,s)pr,s(λ) · Ir,s(λ), (8.1)

where
Ir,s(λ) =

∫ ∞
0

∫ ∞
0

e−λf0(x,y)xrys dxdy.

The integrals Ir,s(λ) are amenable to our method of evaluation (see the remark at
the end of §3) and produce asymptotic expansions, which enjoy the same geometric
connections as I0,0(λ), given by the compound series

Ir,s(λ) ∼ λ−η(r,s)
N∑
j=1

∑
α

ar,s,j(α)λ−ζj(α), λ→∞. (8.2)

The outer sum represents the sum of component series in the compound expansion
(one series for each of the N faces of the Newton diagram). To each of these faces is
associated an asymptotic scale λ−ζj(α), with α a vector of non-negative integers of
dimension equal to the number of internal vertices of the Newton diagram. Combi-
nation of (8.1) and (8.2) then, in principle, supplies the asymptotic expansion of I(λ)
as λ→∞ in the more general case. The structure of this result, however, is seen to
be rather unwieldy, and this is compounded by the fact that the determination of the
terms pr,s(λ) and the powers ν(r, s) is an analytically difficult process. In addition,
for treble (and higher dimensional) integrals treated in the sequel, this problem is
likely to be even more acute as a result of the need to accommodate the possibility
of non-triangular faces in the Newton diagram.

The themes of the investigations carried out in this paper for double Laplace-
type integrals are pursued in a sequel for treble integrals, where the richer geometric
structure of the Newton diagram and its relation to the method utilized here are
explored.

D.K. thanks the Division of Mathematical Sciences at the University of Abertay Dundee for its
hospitality during the course of these investigations, and to the University of Lethbridge, its
Faculty Association and NSERC Canada for financial support.

References
Arnold, V. I., Gussein-Zade, S. M. & Varchenko, A. N. 1988 Singularities of differentiable

maps II. Berlin: Birkhäuser.
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